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Abstract

We determine the structure of the Hodge ring, a natural object encoding the Hodge
numbers of all compact Kähler manifolds. As a consequence of this structure, there
are no unexpected relations among the Hodge numbers, and no essential differences
between the Hodge numbers of smooth complex projective varieties and those of
arbitrary Kähler manifolds. The consideration of certain natural ideals in the Hodge
ring allows us to determine exactly which linear combinations of Hodge numbers are
birationally invariant, and which are topological invariants. Combining the Hodge and
unitary bordism rings, we are also able to treat linear combinations of Hodge and
Chern numbers. In particular, this leads to a complete solution of a classical problem
of Hirzebruch’s.

1. Introduction

For the purpose of studying the spread and potential universal relations among the Betti numbers
of manifolds, one can use elementary topological operations such as connected sums to modify
the Betti numbers in examples. This leads to the conclusion that there are no universal relations
among the Betti numbers, other than the ones imposed by Poincaré duality. However, not every
set of Betti numbers compatible with Poincaré duality is actually realized by a (connected)
manifold. This subtlety is removed, and the discussion in different dimensions combined into one,
by the following definition: consider the Betti numbers as Z-linear functionals on formal Z-linear
combinations of oriented equidimensional manifolds, and identify two such linear combinations
if they have the same Betti numbers and dimensions. The quotient is a graded ring, the oriented
Poincaré ring P∗, graded by the dimension, with multiplication induced by the Cartesian product
of manifolds. This ring has an interesting structure, which we determine in § 2 below. It turns
out that P∗ is finitely generated by manifolds of dimension at most 4, but is not a polynomial
ring over Z, although it does become a polynomial ring after tensoring with Q.

In § 3 we carry out an analogous study for the Hodge numbers of compact Kähler manifolds.
This is potentially much harder, since there is no connected sum or similar cut-and-paste
operation in the Kähler category that would allow one to manipulate individual Hodge numbers
hp,q in examples. Indeed, it seems to have been unknown until now, whether there are any
universal relations among the Hodge numbers of Kähler manifolds beyond the symmetries
hq,p = hp,q = hn−p,n−q. Complex algebraic geometry does provide many constructions of Kähler
manifolds, but these constructions are not as flexible as one might want them to be. Moreover,
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in spite of the recent work of Voisin [Voi10], the gap between complex projective varieties on
the one hand and compact Kähler manifolds on the other is far from understood. We refer the
reader to Simpson’s thought-provoking survey [Sim04] for a description of the general state of
ignorance concerning the spread of Hodge numbers and other invariants of Kähler manifolds.

It is our goal here to shed some light on the behaviour and properties of Hodge numbers
of Kähler manifolds. For this purpose we consider the Hodge numbers as Z-linear functionals
on formal Z-linear combinations of compact equidimensional Kähler manifolds and identify two
such linear combinations if they have the same Hodge numbers and dimensions. The quotient is
a graded ring, the Hodge ring H∗, graded by the complex dimension, with multiplication again
induced by the Cartesian product. Its structure is described by the following result.

Theorem 1. The Hodge ring H∗ is a polynomial ring over Z, with two generators in degree 1,
and one in degree 2. For the generators one may take the projective line L= CP 1, an elliptic
curve E, and any Kähler surface S with signature ±1.

Note that a priori it is not at all obvious that H∗ is finitely generated, let alone generated
by elements of small degree. Moreover, in the topological situation of the Poincaré ring, the
corresponding structure is more complicated, in that P∗ is not a polynomial ring over Z.

The proof of this theorem has several important consequences, including the following.

(1) Since we may take the surface S to be projective, the Hodge ring is generated by projective
varieties. This is in contrast with the work of Voisin [Voi10] on the Kodaira problem, which
showed that more subtle features of Hodge theory do distinguish the topological types of
projective manifolds from those of arbitrary Kähler manifolds.

(2) Counting monomials, we see that the degree n part Hn of the Hodge ring is a free
Z-module of rank equal to the number of Hodge numbers modulo the Kähler symmetries
hq,p = hp,q = hn−p,n−q. Thus there are no universal Q-linear relations between the Hodge
numbers, other than the ones forced by the known symmetries.

(3) The proof of Theorem 1 will show that the Hodge numbers hp,q with 0 6 q 6 p6 n and
p+ q 6 n form a Z-module basis for Hom(Hn, Z). Therefore, there are no non-trivial
universal congruences among these Hodge numbers.

For technical reasons, we find it more convenient to work with a different definition of H∗, rather
than the one given above. However, it will follow from the discussion in § 3 below that the two
definitions give the same result, and this fact will establish statement (3), cf. Remark 3.

In working with Hodge numbers, the Hodge ring plays a role analogous to that of the unitary
bordism ring ΩU

∗ in working with Chern numbers. This bordism ring is also generated by smooth
complex projective varieties, and its structure shows that there are no universal Q-linear relations
between the Chern numbers, cf. § 6.1 below. However, in that case the analogue of statement (3)
above is not true, in that there are universal congruences between the Chern numbers.

Our determination of the Hodge ring over Z allows us to write down all universal linear
relations or congruences between the Hodge numbers of smooth projective varieties and their
Pontryagin or Chern numbers.

(HP) A combination of Hodge numbers equals a combination of Pontryagin numbers if and
only if it is a multiple of the signature, see Corollary 4.

(HC) A combination of Hodge numbers equals a combination of Chern numbers if and only if
it is a combination of the χp =

∑
q(−1)qhp,q, see Corollary 5.
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In these statements the Hodge numbers are considered modulo the Kähler symmetries. We prove
(HP) and (HC) in the strongest form possible, for equalities mod m for all m; the statements
over Z or Q follow. While the validity of these relations is of course well known, their uniqueness
is new, except that, with coefficients in Q, statement (HC) could be deduced from [Kot12,
Corollary 5]. Just as it was unknown until now whether there are universal relations between the
Hodge numbers—we prove that there are none beyond the Kähler symmetries—their potential
relations with the Chern and Pontryagin numbers were unknown.

In § 4 we analyse the comparison map f : H∗ −→P∗, whose image is naturally the Poincaré
ring of Kähler manifolds. We will see that there are no universal relations between the Betti
numbers of Kähler manifolds, other than the vanishing mod 2 of the odd-degree Betti numbers.
Setting aside these trivial congruences, the only relations between the Betti numbers of smooth
projective varieties and their Pontryagin or Chern numbers are the following.

(BC) A combination of Betti numbers equals a combination of Chern numbers if and only if it
is a multiple of the Euler characteristic, see Corollary 7.

(BP) Any congruence between a Z-linear combination of Betti numbers of smooth complex
projective varieties of complex dimension 2n and a non-trivial combination of Pontryagin
numbers is a consequence of e≡ (−1)nσ mod 4, see Corollary 6. Here e and σ denote
the Euler characteristic and the signature respectively.

In both statements the Betti numbers are considered modulo the symmetry imposed by Poincaré
duality. In (BP) the conclusion is that there are no universal Q-linear relations.

We shall determine several geometrically interesting ideals in the Hodge ring. An easy one to
understand is the ideal generated by differences of birational smooth projective varieties. This
leads to the following result, again modulo the Kähler symmetries of Hodge numbers.

Theorem 2. The mod m reduction of an integral linear combination of Hodge numbers is a
birational invariant of projective varieties if and only if the linear combination is congruent
modulo m to a linear combination of the h0,q.

It follows that a rational linear combination of Hodge numbers is a birational invariant
of smooth complex projective varieties if and only if, modulo the Kähler symmetries, it is a
combination of the h0,q only.

Other ideals in H∗ we will calculate are those of differences of homeomorphic or diffeomorphic
complex projective varieties, thereby determining exactly which linear combinations of Hodge
numbers are topological invariants. The question of the topological invariance of Hodge numbers
was first raised by Hirzebruch in 1954. His problem list [Hir54] contains the following question
about the Hodge and Chern numbers of smooth complex projective varieties, listed there as
Problem 31.

Problem. Are the hp,q and the Chern characteristic numbers of an algebraic variety Vn topological
invariants of Vn? If not, determine all those linear combinations of the hp,q and the Chern
characteristic numbers which are topological invariants.

Since the time of Hirzebruch’s problem list almost sixty years ago, this and related questions
have been raised repeatedly in other places, such as a mathoverflow posting by S. Kovács in late
2010, asking whether the Hodge numbers of Kähler manifolds are diffeomorphism invariants. The
special case of Hirzebruch’s question where one considers linear combinations of Chern numbers
only, without the Hodge numbers, was recently answered by the first author [Kot09, Kot12]. That
answer used the structure results of Milnor [Mil60, Tho95] and Novikov [Nov62] for the unitary
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bordism ring, exploiting the bordism invariance of Chern numbers. The Hodge numbers were not
treated systematically in [Kot09, Kot12] because they are not bordism invariants. However, the
results of those papers, and already of [Kot08], show that certain linear combinations of Hodge
numbers that are bordism invariants because of the Hirzebruch–Riemann–Roch theorem are not
(oriented) diffeomorphism invariants in complex dimensions > 3. This failure of diffeomorphism
invariance of Hodge numbers, which can be traced to the fact that certain examples of pairs of
algebraic surfaces with distinct Hodge numbers from [Kot92] become diffeomorphic after taking
products with CP 1, say, was also observed independently several years ago by F. Campana
(unpublished).

In spite of these observations, the question of determining which linear combinations of Hodge
numbers are topological invariants was still wide open. In § 5 below we settle this question using
the Hodge ring and the forgetful comparison map f : H∗ −→P∗. The result is the following
theorem.

Theorem 3. The mod m reduction of an integral linear combination of Hodge numbers of
smooth complex projective varieties is:

(1) an oriented homeomorphism or diffeomorphism invariant if and only if it is congruent mod
m to a linear combination of the signature, the even-degree Betti numbers and the halves
of the odd-degree Betti numbers; and

(2) an unoriented homeomorphism invariant in any dimension, or an unoriented diffeomorphism
invariant in dimension n 6= 2, if and only if it is congruent mod m to a linear combination
of the even-degree Betti numbers and the halves of the odd-degree Betti numbers.

The corresponding result for rational linear combinations follows. Complex dimension 2 has to
be excluded when discussing diffeomorphism invariant Hodge numbers, since in that dimension
all the Hodge numbers are linear combinations of Betti numbers and the signature, and the
signature is, unexpectedly, invariant under all diffeomorphisms, even if they are not assumed to
preserve the orientation, see [Kot97, Theorem 6], and also [Kot08, Theorem 1].

In § 6 we consider arbitrary Z-linear combinations of Hodge and Chern numbers. In the same
way that the Hodge numbers lead to the definition of H∗, these more general linear combinations
lead to the definition of another ring, the Chern–Hodge ring CH∗. We use CH∗ to prove that
Theorem 2 remains true for mixed linear combinations of Hodge and Chern numbers in place
of just Hodge numbers. In this general setting, the conclusion of course has to be interpreted
modulo the HRR relations, see Theorem 13 and Corollary 8, which also generalize a recent
theorem about Chern numbers proved over Q by Rosenberg [Ros08, Theorem 4.2].

In § 7 we study certain ideals in CH∗ ⊗Q, leading to the following answer to the general form
of Hirzebruch’s question, mixing the Hodge and Chern numbers in linear combinations.

Theorem 4. A rational linear combination of Hodge and Chern numbers of smooth complex
projective varieties is:

(1) an oriented homeomorphism or diffeomorphism invariant if and only if it reduces to a
linear combination of the Betti and Pontryagin numbers after perhaps adding a suitable
combination of the χp − Tdp; and

(2) an unoriented homeomorphism invariant in any dimension, or an unoriented diffeomorphism
invariant in dimension n 6= 2, if and only if it reduces to a linear combination of the Betti
numbers after perhaps adding a suitable combination of the χp − Tdp.
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As always, the Hodge numbers are considered modulo the Kähler symmetries. This theorem
is a common generalization of Theorem 3 for the Hodge numbers and the main theorems
of [Kot09, Kot12] for the Chern numbers. Once again complex dimension 2 has to be
excluded in the statement about unoriented diffeomorphism invariants because the signature
is a diffeomorphism invariant of algebraic surfaces by [Kot97, Theorem 6], see also [Kot08,
Theorem 1]. We do not state this theorem for congruences, since we are unable to prove it if the
modulus m is divisible by 2 or 3; compare Remark 5 in § 7.

Dedication
We dedicate this work to the memory of F. Hirzebruch, who first formulated the main problems
treated here and who was one of the principal creators of their mathematical context. He read
the preprint version of our solution, but sadly passed away before its publication in print. We
are fortunate to have been influenced by him.

2. The Poincaré ring

In the introduction we defined the Poincaré ring by taking Z-linear combinations of oriented
equidimensional manifolds, and identifying two such linear combinations if they have the same
Betti numbers and dimensions. Elements of this ring can be identified with their Poincaré
polynomials

Pt,z(M) = (b0(M) + b1(M) · t+ · · ·+ bn(M) · tn) · zn ∈ Z[t, z],

where the bi(M) are the real Betti numbers ofM . Here we augment the usual Poincaré polynomial
using an additional variable z in order to keep track of the dimension in linear combinations where
the top-degree Betti number may well vanish. In this way we obtain an embedding of the Poincaré
ring into Z[t, z]. This embedding preserves the grading given by deg(t) = 0 and deg(z) = 1.

The Betti numbers satisfy the Poincaré duality relations

bi(M) = bn−i(M) for all i and bn/2(M)≡ 0 mod 2 if n≡ 2 mod 4.

Not every polynomial having this symmetry and satisfying the obvious constraints bi(M) > 0
and b0(M) = 1 can be realized by a connected manifold. For example, it is known classically
that (1 + tk + t2k)z2k cannot be realized if k is not a power of 2; cf. [Hir53, § 2]. We sidestep
this issue by modifying the definition of the Poincaré ring in the following way, replacing it by
a potentially larger ring with a more straightforward definition.

Let Pn be the Z-module of all formal augmented Poincaré polynomials

Pt,z = (b0 + b1 · t+ · · ·+ bn · tn) · zn ∈ Z[t, z],

satisfying the duality condition bi = bn−i for all i and bn/2 ≡ 0 (mod 2) if n≡ 2 (mod 4),
regardless of whether they can be realized by manifolds. One could show directly that all elements
of Pn are Z-linear combinations of Poincaré polynomials of closed orientable n-manifolds, thereby
proving that this definition of Pn coincides with the one given in the introduction. We will not
do this here, but will reach the same conclusion later on, see Remark 1 below.

For future reference we note the following obvious statement.

Lemma 1. The Z-module Pn is free of rank [(n+ 2)/2], spanned by the following basis:

enk = (tk + tn−k)zn for 0 6 k < n/2,
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and, if n is even,

enn/2 = tn/2zn if n≡ 0 (mod 4),

respectively

enn/2 = 2tn/2zn if n≡ 2 (mod 4).

We define the Poincaré ring by

P∗ =
∞⊕

n=0

Pn ⊂ Z[t, z].

This is a graded ring whose addition and multiplication correspond to the disjoint union and the
Cartesian product of manifolds, and the grading, induced by the degree in Z[t, z] with deg(t) = 0
and deg(z) = 1, corresponds to the dimension.

The structure of the Poincaré ring is completely described by the following theorem.

Theorem 5. Let W , X, Y and Z have degrees 1, 2, 3 and 4 respectively. The oriented Poincaré
ring P∗ is isomorphic, as a graded ring, to the quotient of the polynomial ring Z[W, X, Y, Z] by
the homogeneous ideal I generated by

WX − 2Y, X2 − 4Z, XY − 2WZ, Y 2 −W 2Z.

Proof. Define a homomorphism of graded rings

P : Z[W, X, Y, Z]−→P∗
by setting

P (W ) = (1 + t)z, P (X) = 2tz2, P (Y ) = (t+ t2)z3, P (Z) = t2z4.

By definition, P vanishes on I, and so induces a homomorphism from the quotient
Z[W, X, Y, Z]/I to P∗. We will show that this induced homomorphism is an isomorphism. The
first step is to prove surjectivity.

Lemma 2. The homomorphism P is surjective.

Proof. If n≡ 0 (mod 4), then enn/2 = P (Zn/4). Similarly, if n≡ 2 (mod 4), then enn/2 =

P (XZ(n−2)/4). Thus we only have to prove that enk is in the image of P for all k < n/2. We
do this by induction on n.

It is easy to check explicitly that P is surjective in degrees 6 4. Therefore, for the induction
we fix some n> 5, and we assume that surjectivity of P is true in all degrees < n.

Consider first the case when n is even. Then for k < n/2 we have the following identity:

enk = e
n/2−k
0 · en/2+k

k − 2tn/2zn.

By the induction hypothesis the two factors en/2−k
0 and e

n/2+k
k are in the image of P . Since we

have already noted that 2tn/2zn is in the image of P , we conclude that P is surjective in degree n.
Finally, assume that n is odd. In this case we have

enk = (1 + t)z ·
(n−2k−1∑

i=0

(−1)itk+i

)
zn−1

= (1 + t)z ·
( ∑

i6=(n−2k−1)/2

(−1)itk+i

)
zn−1 + (−1)(n−2k−1)/2(1 + t)z · t(n−1)/2zn−1.
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Here (1 + t)z = P (W ) by definition, and the induction hypothesis tells us that( ∑
i6=(n−2k−1)/2

(−1)itk+i

)
zn−1

with i running from 0 to n− 2k − 1 is in the image of P .
On the one hand, if n≡ 1 (mod 4), then t(n−1)/2zn−1 = P (Z(n−1)/4). On the other hand, if

n≡ 3 (mod 4), then we rewrite

(1 + t)z · t(n−1)/2zn−1 = (t+ t2)z3 · t(n−3)/2zn−3 = P (Y Z(n−3)/4).

This completes the proof of surjectivity of P in all degrees. 2

The next step in the proof of the theorem is to estimate the rank of the degree n part of the
quotient Z[W, X, Y, Z]/I.

Lemma 3. The degree n part of the quotient Z[W, X, Y, Z]/I is generated as a Z-module by at
most [(n+ 2)/2] elements.

Proof. A generating set is provided by the images of the monomials W iXjY kZ l with i+ 2j +
3k + 4l = n. The relations X2 = 4Z and Y 2 =W 2Z from the definition of I mean that we only
have to consider j = 0 or 1 and k = 0 or 1. Further, since XY = 2WZ, we do not need any
monomials where j = k = 1. Finally, since WX = 2Y , we may assume i= 0 whenever j = 1.
Thus, a generating set for the degree n part of the quotient Z[W, X, Y, Z]/I is given by the
images of the monomials W iZ l, XZ l and W iY Z l.

Assume first that n− 2 is not divisible by 4. In this case there is no monomial of the form
XZ l of degree n. The number of monomials of the form W iZ l is [(n+ 4)/4], and the number of
monomials of the form W iY Z l is [(n+ 1)/4]. The sum of these two numbers is [(n+ 2)/2], since
we assumed that n is not congruent to 2 modulo 4.

If n≡ 2 (mod 4), then there is exactly one monomial of the form XZ l of degree n, and in
this case

1 +
[
n+ 4

4

]
+
[
n+ 1

4

]
=
[
n+ 2

2

]
.

This completes the proof of the lemma. 2

To complete the proof of the theorem, consider the homomorphism of graded rings

Z[W, X, Y, Z]/I −→P∗
induced by P . By Lemma 2 this is surjective. Now Pn is free of rank [(n+ 2)/2] by Lemma 1,
and the degree n part of Z[W, X, Y, Z]/I, which surjects to Pn, is generated as a Z-module
by [(n+ 2)/2] elements, according to Lemma 3. This is only possible if the degree n part of
Z[W, X, Y, Z]/I is also free, and the surjection is injective, and, therefore, an isomorphism. 2

Remark 1. The generators W , X, Y and Z satisfy the following:

P (W ) = Pt,z(S1),
P (X) = Pt,z(S1 × S1)− Pt,z(S2),
P (Y ) = Pt,z(S1 × S2)− Pt,z(S3),
P (Z) = Pt,z(S2 × S2)− Pt,z(CP 2).

This shows that the definition of the Poincaré ring used in this section gives the same ring
as the one defined in the introduction. Indeed, all elements of P∗ as defined here are Z-linear
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combinations of Poincaré polynomials of closed orientable manifolds, and one can take S1, S2, S3

and CP 2 as generators. The generators W , X, Y and Z have the advantage of giving a simpler
form for the relations generating the ideal I.

Theorem 5 has the following immediate implication, showing that away from the prime 2 the
oriented Poincaré ring is in fact a polynomial ring.

Corollary 1. Let k be a field of characteristic 6=2. Then P∗ ⊗ k is isomorphic to a polynomial
ring k[W, X] on two generators of degrees 1 and 2 respectively. For the generators one may take
S1 and S2.

Since products of S1 and S2 have vanishing Pontryagin numbers, Corollary 1 implies that
there are no universal Q-linear relations between Betti and Pontryagin numbers. This result
also follows, in a less direct way, from [Kot10, Corollary 3]. The corresponding statement for
congruences between integral linear combinations is slightly more subtle, and depends on the
integral structure of the Poincaré ring.

Corollary 2. Any non-trivial congruence between an integral linear combination of Betti
numbers of oriented manifolds and an integral linear combination of Pontryagin numbers is
a multiple of the mod 2 congruence between the Euler characteristic and the signature.

Here, as always, the Betti numbers are considered modulo the symmetry induced by Poincaré
duality. Non-trivial congruences are those in which the two sides do not vanish separately.

Proof. A linear combination of Betti numbers of oriented n-manifolds that is congruent mod m
to a linear combination of Pontryagin numbers corresponds to a homomorphism ϕ : Pn −→ Zm

that vanishes on all manifolds with zero Pontryagin numbers. Consider the generating elements
W , X, Y and Z of P∗ in Theorem 5. In terms of these elements, the 4-sphere satisfies

S4 =W 4 − 4WY + 2Z ∈ P∗.

Since any product with W , X, Y or S4 as a factor has vanishing Pontryagin numbers, Theorem 5
together with this relation implies that the homomorphism ϕ descends to the degree n part of the
quotient Z[Z]/2Z. Now the mod 2 reduction of the Euler characteristic induces an isomorphism
between Z[Z]/2Z and Z2[z4]. Furthermore, the Euler characteristic is congruent mod 2 to the
signature, which is a linear combination of Pontryagin numbers by the work of Thom. This
completes the proof. 2

Remark 2. Proceeding as above, one can define the unoriented Poincaré ring using Z2-Poincaré
polynomials of manifolds that are not necessarily orientable. It is easy to see that this ring is a
polynomial ring over Z, isomorphic to Z[RP 1, RP 2].

3. The Hodge ring

To every closed Kähler manifold of complex dimension n we associate its Hodge polynomial

Hx,y,z(M) =
( n∑

p,q=0

hp,q(M) · xpyq

)
· zn ∈ Z[x, y, z],

where the hp,q(M) are the Hodge numbers satisfying the Kähler constraints hq,p = hp,q =
hn−p,n−q. Like with the Poincaré polynomial, we have augmented the Hodge polynomial by the
introduction of the additional variable z, which ensures that the Hodge polynomial defines an
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embedding of the Hodge ring H∗ defined in the introduction into the polynomial ring Z[x, y, z].
This embedding preserves the grading if we set deg(x) = deg(y) = 0 and deg(z) = 1.

The Hodge polynomial refines the Poincaré polynomial in the sense that if one sets x= y = t
and collects terms, the Hodge polynomial reduces to the Poincaré polynomial. (At the same time
one has to replace z by z2 since the real dimension of a Kähler manifold is twice its complex
dimension.)

Unlike in the definition used in the introduction, we now define Hn to be the Z-module of all
polynomials

Hx,y,z =
( n∑

p,q=0

hp,q · xpyq

)
· zn ∈ Z[x, y, z]

satisfying the constraints hq,p = hp,q = hn−p,n−q. We will prove in Corollary 3 below that all
elements of Hn are in fact Z-linear combinations of Hodge polynomials of compact Kähler
manifolds of complex dimension n, so that this definition agrees with the one in the introduction.

Lemma 4. The Z-module Hn is free of rank [(n+ 2)/2] · [(n+ 3)/2].

Proof. Given the constraints hq,p = hp,q = hn−p,n−q, visualized in the Hodge diamond, it is
straightforward to write down a module basis for Hn with [(n+ 2)/2] · [(n+ 3)/2] elements. 2

We define the Hodge ring by

H∗ =
∞⊕

n=0

Hn ⊂ Z[x, y, z].

This is a commutative ring with a grading given by the degree. (Recall that the degrees or
weights of x, y and z are 0, 0 and 1 respectively.) Multiplication corresponds to taking the
Cartesian product of Kähler manifolds, and the grading corresponds to the complex dimension.
Its structure is completely described by the following theorem.

Theorem 6. Let A and B have degree 1 and C have degree 2. The homomorphism

H : Z[A, B, C]−→H∗
given by

H(A) = (1 + xy) · z, H(B) = (x+ y) · z, H(C) = xy · z2

is an isomorphism of graded rings.

This result can be proved by an argument that parallels the one we used in the proof of
Theorem 5. We give a different proof, that illustrates a somewhat different point of view.

Proof. In order to prove the injectivity of H, we need to show that there is no non-trivial
polynomial in A, B and C which maps to zero under H. Since there is always a prime number
p, such that the mod p reduction of such a polynomial is non-trivial, the injectivity of H follows
from the following stronger statement.

Lemma 5. Let p be a prime number. The mod p reduction of the map H

H̃ : Zp[A, B, C]−→ Zp[x, y, z],

given by sending A, B and C to the mod p reductions of H(A), H(B) and H(C), is injective.

Proof. Suppose the contrary and let n be the smallest degree in which H̃ is not injective. Then
ker(H̃) contains a non-trivial element of the form C ·Q(A, B, C) +R(A, B), where Q(A, B, C)
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and R(A, B) are homogeneous polynomials with coefficients in Zp of degrees n− 2 and n
respectively. If we set y = 0, we obtain R(z, xz) = 0 in Zp[x, z]. Since z and xz are algebraically
independent in Zp[x, z], we conclude that the polynomial R vanishes identically. Therefore,
C ·Q(A, B, C) ∈ ker(H̃). Since Zp[x, y, z] is an integral domain in which H̃(C) = xy · z2 is a
non-trivial element, we conclude that Q(A, B, C) also lies in the kernel of H̃. This contradicts
the minimality of n. 2

It remains to prove the surjectivity of H. Counting the monomials in A, B, and C of degree
n shows that the degree n part of the graded polynomial ring Z[A, B, C] is a free Z-module of
rank N = [(n+ 2)/2] · [(n+ 3)/2]. By the injectivity of H, this is mapped isomorphically onto a
submodule of Hn, which by Lemma 4 is also a free Z-module of rank N . Therefore, there are a
basis h1, . . . , hN of Hn and non-zero integers a1, . . . , aN such that a1h1, . . . , aNhN is a basis
of Im(H). It remains to show that the integers ai are all equal to ±1. Suppose the contrary and
let p be a prime number which divides ai. Since aihi ∈ Im(H), this is the image of a polynomial
S(A, B, C). The mod p reduction of S must be non-trivial, since otherwise aihi/p would lie
in the image of H. However, the mod p reduction of aihi vanishes by assumption, which is a
contradiction with Lemma 5. This completes the proof of the theorem. 2

From now on we use the isomorphism H to identify A, B and C with their images in H∗. The
following corollary paraphrases Theorem 1 stated in the introduction, and explains that instead
of A, B and C one may choose different generators for H∗. Before we state it, note that by the
Hodge index theorem the signature of manifolds induces a ring homomorphism σ : H∗ −→ Z[z],
given by x 7→ −1, y 7→ 1.

Corollary 3. Let E be an elliptic curve, L the projective line and let S be an element in H2

with signature ±1. (For instance, S might be a Kähler surface with signature ±1.) Then, H∗ is
isomorphic to the polynomial ring Z[E, L, S].

Proof. First of all, note the identities A= L and B = E − L, which allow us to replace the
generators A and B in degree 1 by E and L. We may represent the element S with respect
to the basis A2, AB, B2 and C of H2, given by Theorem 6. It remains to show that, in
this representation, the basis element C occurs with coefficient ±1. Since A and B have zero
signature and C has signature −1, this is equivalent to S having signature ±1, which is true by
assumption. 2

Remark 3. We have now proved that all formal Hodge polynomials are indeed Z-linear
combinations of Hodge polynomials of Kähler manifolds. This shows that the definition of H∗
given at the beginning of this section gives the same ring as the definition in the introduction,
and it proves statement (3) from the introduction.

The last corollary also leads to the following result, which generalizes [Kot09, Theorem 6],
proved there rather indirectly.

Corollary 4. The mod m reduction of a Z-linear combination of Hodge numbers equals the
mod m reduction of a linear combination of Pontryagin numbers if and only if, modulo m, it is
a multiple of the signature.

Proof. If in complex dimension 2n a Z-linear combination of Pontryagin numbers equals a linear
combination of Hodge numbers, then it can be considered as a homomorphism ϕ on H2n. The
domain is spanned by products of E, L and S, but any product with a complex curve as a factor
has trivial Pontryagin numbers. Thus ϕ factors through the projection Z[L, E, S]−→ Z[S], which
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we can identify with the signature homomorphism, since the signature of S is ±1. Conversely,
the signature is a linear combination of Pontryagin numbers by the classical results of Thom. 2

Returning to the generators A, B and C for H∗ we can prove the following result, which
implies Theorem 2 stated in the introduction.

Theorem 7. Let I ⊂H∗ be the ideal generated by differences of birational smooth complex
projective varieties. Then I = (C) = ker(b), where C = xy · z2 and b : H∗ −→ Z[y, z] is given by
setting x= 0 in the Hodge polynomials.

Proof. If S is a Kähler surface and Ŝ its blowup at a point, then Ŝ − S = C, and so (C)⊂ I.
The homomorphism b sends the Hodge polynomial in degree n to (h0,0 + h0,1y + · · ·+

h0,nyn)zn. As the h0,q are birational invariants, cf. [GH78, p. 494], we have I ⊂ ker(b). From
the proof of Theorem 6 we know already that there are no universal relations between the Hodge
numbers, other than the ones generated by the Kähler symmetries, and so the image of b in
degree n is a free Z-module of rank n+ 1. Since (C)⊂ ker(b), this means that b maps Z[A, B]
isomorphically onto Im(b), and so (C) = ker(b). 2

This theorem tells us exactly which linear combinations of Hodge numbers are birational
invariants of projective varieties, or of compact Kähler manifolds. Indeed, any homomorphism
ϕ : Hn −→M of Z-modules that vanishes on I ∩ Hn factors through b. This proves Theorem 2
stated in the introduction.

We already mentioned the homomorphism σ : H∗ −→ Z[z] given by the signature. It is a
specialization (for y = 1) of the Hirzebruch genus

χ : H∗ −→ Z[y, z]

defined by setting x=−1 in the Hodge polynomials. Consider a polynomial

(χ0 + χ1y + · · ·+ χny
n) · zn ∈ Im(χ).

By Serre duality in Hn, this must satisfy the constraint χp = (−1)nχn−p. Let Hirn be the
Z-module of all polynomials of the form (χ0 + χ1y + · · ·+ χny

n)zn ∈ Z[y, z] satisfying this
constraint. It is clear that this is a free Z-module of rank [(n+ 2)/2], and that

Hir∗ =
∞⊕

n=0

Hirn ⊂ Z[y, z]

is a graded commutative ring.

Theorem 8. The Hirzebruch genus defines a surjective homomorphism χ : H∗ −→Hir∗ of
graded rings, whose kernel is the principal ideal inH∗ generated by an elliptic curve. In particular
Hir∗ is a polynomial ring over Z with one generator in degree 1 and one in degree 2. As generators
one may choose CP 1 and CP 2.

Proof. It is clear that χ is a homomorphism of graded rings, and that elliptic curves are
in its kernel. Identifying H∗ with Z[E, CP 1, CP 2], the Hirzebruch genus factors through
the projection Z[E, CP 1, CP 2]−→ Z[CP 1, CP 2], and we have to show that the induced
homomorphism Z[CP 1, CP 2]−→Hir∗ is an isomorphism. This follows from the proof of
Theorem 6, where we showed that there are no unexpected relations between the Hodge numbers.
In particular, there are no non-trivial relations between the coefficients χ0, χ1, . . . , χ[n/2].
Alternatively one can show that Z[CP 1, CP 2]−→Hir∗ is an isomorphism by elementary
manipulations using χ(CP 1) = (1− y)z and χ(CP 2) = (1− y + y2)z2. 2
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Remark 4. With coefficients in Q, it is well known that the image of the Hirzebruch genus is
a polynomial ring on the images of CP 1 and CP 2. That this also holds over Z was recently
made explicit in [Sch, Remark 7.6]. There, as everywhere in the literature, the Hirzebruch genus
is identified with the Todd genus on the complex bordism ring using the Hirzebruch–Riemann–
Roch theorem. However, by its very definition, it should be considered on the Hodge ring instead,
which is a much simpler object than the bordism ring, and in particular is finitely generated. By
HRR, the two interpretations give the same image, since the bordism ring is generated, over Z,
by Kähler manifolds, compare § 6.1 below.

Theorem 8 tells us that there are no universal relations between the Hodge and Chern numbers
other than the Hirzebruch–Riemann–Roch relations.

Corollary 5. The mod m reduction of a Z-linear combination of Hodge numbers of smooth
complex projective varieties equals a linear combination of Chern numbers if and only if, mod
m and modulo Kähler symmetries, it is a linear combination of the χp.

Proof. Since products with an elliptic curve as a factor have trivial Chern numbers, any linear
combination of Hodge numbers that equals a combination of Chern numbers must factor through
the projection H∗ −→H∗/(E). By Theorem 8, this projection is the Hirzebruch genus χ.
Conversely, by the Hirzebruch–Riemann–Roch theorem, the coefficients of χ are expressed as
linear combinations of Chern numbers via the Todd polynomials. 2

4. The comparison map and the Poincaré ring of Kähler manifolds

In this section we analyse the comparison map

f : H∗ −→P∗
x 7−→ t, y 7−→ t, z 7−→ z2

given by forgetting the Kähler structure on elements of H∗, thus specializing Hodge polynomials
to Poincaré polynomials. This map doubles the degree, since the real dimension of a Kähler
manifold is twice its complex dimension. Here are the main properties of this homomorphism.

Proposition 1. (1) The image of f consists of all elements of P∗ ⊂ Z[t, z] of even degree,
whose coefficients of odd powers of t are even.

(2) The kernel of f is a principal ideal in H∗ generated by the following homogeneous element
G of degree 2:

G= 4CP 2 − 3L2 + E2 − 2EL.

Proof. In § 3 we defined H∗ to be generated by all formal Hodge polynomials( n∑
p,q=0

hp,q · xpyq

)
· zn,

in Z[x, y, z], satisfying the Kähler symmetries hp,q = hq,p = hn−p,n−q. Serre duality hp,q =
hn−p,n−q implies Poincaré duality for the image under f , whereas the symmetry hp,q = hq,p

implies that the image has even odd-degree Betti numbers. Finally, since f doubles the degree,
its image is concentrated in even degrees. Conversely, it is straightforward to check that the
elements e2n

n , e2n
k with even k < n, and 2e2n

k with odd k < n of P2n in Lemma 1 are images of
formal Hodge polynomials. This establishes the first part of the proposition.
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For the second part, we note that G= 4CP 2 − 3L2 + E2 − 2EL has zero Betti numbers and
therefore lies in the kernel of f . Thus f induces a homomorphism f̂ : H∗/(G)−→P∗. By the
first part of the proposition proved above, the image of f , equivalently f̂ , in degree 2n is a free
Z-module of rank n+ 1. By Corollary 3, the degree n part of H∗/(G) is generated as a Z-module
by n+ 1 elements. Therefore, f̂ is injective, and an isomorphism onto Im(f)⊂ P∗. 2

By the first part of this proposition, a basis for Hom(f(Hn), Z) is given by the even-degree
Betti numbers and the halves of the odd-degree Betti numbers, both up to the middle dimension
only because of Poincaré duality. In particular, the only non-trivial congruences satisfied by the
Betti numbers of Kähler manifolds are the vanishing mod 2 of the odd-degree Betti numbers.

Proceeding as in the definition of the Poincaré ring P∗ of oriented manifolds in § 2, we define
the Poincaré ring of Kähler manifolds. This ring is the image of the comparison map f in P∗.
Thus, Proposition 1 yields the following theorem.

Theorem 9. The Poincaré ring of Kähler manifolds Im(f) is isomorphic to

Z[L, E, CP 2]/(4CP 2 − 3L2 + E2 − 2EL),

where L= CP 1 is the projective line and E an elliptic curve.

Using this theorem, we can determine all universal relations between Betti and Pontryagin
numbers of Kähler manifolds. Since in odd complex dimensions there are no non-trivial
Pontryagin numbers, we can restrict ourselves to even complex dimensions. In these dimensions,
for Kähler manifolds only, Corollary 2 is strengthened as follows.

Corollary 6. Any non-trivial congruence between an integral linear combination of Betti
numbers of Kähler manifolds of even complex dimension 2n and an integral linear combination
of Pontryagin numbers is a multiple of the following congruence between the Euler characteristic
and the signature:

e≡ (−1)nσ mod 4. (1)

The word non-trivial in the formulation is meant to indicate that we ignore congruences
where both sides vanish separately. This is necessary because the odd-degree Betti numbers are
all even.

Proof. The signature is a linear combination of Pontryagin numbers by the work of Thom.
That it satisfies the congruence (1) for compact Kähler manifolds follows from the Hodge index
theorem.

Conversely, suppose we have a Z-linear combination of Betti numbers that, on all Kähler
manifolds of complex dimension 2n, is congruent to a linear combination of Pontryagin numbers
modulo m, but does not vanish identically mod m. Such a linear combination corresponds to a
homomorphism ϕ from the degree 4n part of the Poincaré ring of Kähler manifolds to Zm that
vanishes on all elements with zero Pontryagin numbers. Since the Pontryagin numbers vanish
on manifolds that are products with a complex curve as a factor, Theorem 9 shows that ϕ
factors through the degree 4n part of Z[CP 2]/(4CP 2). Now the mod 4 reduction of the Euler
characteristic gives an isomorphism between Z[CP 2]/(4CP 2) and Z4[z4]. This completes the
proof. 2

Replacing the Pontryagin numbers by the Chern numbers of Kähler manifolds, we obtain the
following corollary.
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Corollary 7. A Z-linear combination of Betti numbers of Kähler manifolds is congruent mod
m to a non-trivial linear combination of Chern numbers if and only if, mod m, it is a multiple
of the Euler characteristic.

Again we do not consider congruences where the two sides vanish separately.

Proof. Since the Euler characteristic of a Kähler manifold equals the top Chern number cn, one
direction is clear. For the converse, assume that, in complex dimension n, the mod m reduction
of some Z-linear combination of Chern numbers equals a linear combination of Betti numbers.
This corresponds to a non-trivial homomorphism from the degree 2n part of the Poincaré
ring of Kähler manifolds to Zm. Since any product with an elliptic curve has trivial Chern
numbers, Theorem 9 shows that this homomorphism descends to a homomorphism from the
degree 2n part of Z[L, CP 2]/(4CP 2 − 3L2) to Zm. Upon identifying this ring with the subring
of Z[z2] generated by 2z2 and z4, the projection from the Poincaré ring of Kähler manifolds to
Z[L, CP 2]/(4CP 2 − 3L2) is identified with the Euler characteristic, obtained by setting t=−1
in the Poincaré polynomials. This completes the proof. 2

5. The Hirzebruch problem for Hodge numbers

In this section we solve Hirzebruch’s problem concerning Hodge numbers by proving Theorem 3
stated in the introduction. The following is the first step in its proof.

Theorem 10. The ideal in the Hodge ring H∗ generated by the differences of homeomorphic
smooth complex projective varieties coincides with the kernel of the forgetful map f : H∗ −→P∗.

Proof. Let I ⊂H∗ be the ideal generated by

{M −N |M, N homeomorphic projective varieties of dimension n},

for all n. These are differences of smooth complex projective varieties of complex dimension n
that are homeomorphic, without any assumption about compatibility of their orientations under
homeomorphisms.

Since Poincaré polynomials are homeomorphism invariants, it is clear that I ⊂ ker(f). To
prove ker(f)⊂ I we use Proposition 1, telling us that ker(f) is a principal ideal generated by
an element G in degree 2. This G has the property that all its Betti numbers vanish, and its
signature equals +4. We only have to prove that G ∈ I.

By the results of [Kot92] there are many pairs (X, Y ) of simply connected projective
surfaces of non-zero signature that are orientation-reversingly homeomorphic with respect to
the orientations given by the complex structures. The only divisibility condition that has
to be satisfied in all cases is that the signatures must be even. More specifically, by [Kot92,
Theorem 3.7], we can choose two such pairs (X1, Y1) and (X2, Y2) with the property that the
greatest common divisor of the signatures σ(X1) and σ(X2) is 2. Then there are integers a and
b such that

aσ(X1) + bσ(X2) = 2. (2)
We now claim that the following identity holds:

Hx,y,z(G) = a(Hx,y,z(X1)−Hx,y,z(Y1)) + b(Hx,y,z(X2)−Hx,y,z(Y2)). (3)

Since Xi − Yi ∈ I, this proves that G ∈ I.
To prove (3) note that the Betti numbers vanish on both the left-hand and the right-hand

sides. Therefore, to check that all Hodge numbers agree, we only have to check the equality of
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the signatures, as follows:

σ(a(X1 − Y1) + b(X2 − Y2)) = 2σ(aX1 + bX2) = 4 = σ(G),

where the first equality comes from the fact that Xi and Yi are orientation-reversingly
homeomorphic and the second equality comes from (2). This completes the proof of the
theorem. 2

Next we consider differences of diffeomorphic, not just homeomorphic, projective varieties.

Theorem 11. In degrees n> 3 the kernel of f : Hn −→P2n is generated as a Z-module by
differences of diffeomorphic smooth complex projective varieties.

In all degrees the intersection ker(f) ∩ ker(σ) is generated as a Z-module by differences of
smooth complex projective varieties that are orientation-preservingly diffeomorphic with respect
to the orientations induced by the complex structures.

Proof. By the proof of Theorem 10, the ideal ker(f) is generated by differences of pairs of
homeomorphic simply connected algebraic surfaces (Xi, Yi). IdentifyingH∗ with Z[E, CP 1, CP 2],
we see that the kernel of f : Hn −→P2n is generated as a Z-module by products of the Xi − Yi

with E, CP 1 and CP 2.
By a result of Wall [Wal64], the smooth four-manifolds Xi and Yi are smoothly h-cobordant.

It follows that Xi × CP j and Yi × CP j are also h-cobordant, and are therefore diffeomorphic
by Smale’s h-cobordism theorem [Sma62]. Products of Xi − Yi with powers of E, therefore not
involving a CP j , are handled by the following Lemma, which is a well-known consequence of the
s-cobordism theorem of Barden, Mazur and Stallings; see [Ker65, p. 41/42].

Lemma 6. Let M and N be h-cobordant manifolds of dimension > 5. Then M × S1 and N × S1

are diffeomorphic.

This shows that the products Xi × E and Yi × E are diffeomorphic, completing the proof of
the first statement.

For the second statement note that ker(f) ∩ ker(σ) vanishes in degrees < 3. Therefore, we
only have to consider the degrees already considered in the first part. The generators considered
there all have zero signature, except the products of Xi − Yi with pure powers of CP 2. This
implies that the products of Xi − Yi with monomials in E, CP 1 and CP 2 that involve at least
one of the curves generate ker(f) ∩ ker(σ). Since E and CP 1 admit orientation-reversing self-
diffeomorphisms, it follows that Xi × E and Yi × E, respectively Xi × CP 1 and Yi × CP 1, are
not just diffeomorphic, as proved above, but that the diffeomorphism may be chosen to preserve
the orientations. This completes the proof. 2

We can now give a complete answer to Hirzebruch’s question concerning Hodge numbers.

Proof of Theorem 3. We consider integral linear combinations of Hodge numbers as
homomorphisms ϕ : Hn −→ Zm. If a linear combination of Hodge numbers defines an unoriented
homeomorphism invariant, then by Theorem 10 the corresponding homomorphism ϕ factors
through f . Looking at the description of Im(f) in Proposition 1, we see that every
homeomorphism-invariant linear combination of Hodge numbers is a combination of the even-
degree Betti numbers and the halves of the odd-degree Betti numbers. By the first part of
Theorem 11, the same conclusion holds for unoriented diffeomorphism invariants in dimensions
n 6= 2.

Combining the above discussion with the second part of Theorem 11 completes the proof of
Theorem 3. 2
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Example 1. By the results of [Kot92] used above, the signature itself is not a homeomorphism
invariant of smooth complex projective varieties. However, the reduction mod 4 of the signature is
a homeomorphism invariant, since by the proof of Theorem 10, it vanishes on the ideal I = ker(f).
Theorem 3 then tells us that the signature of a Kähler manifold is congruent mod 4 to a linear
combination of even-degree Betti numbers and halves of odd-degree Betti numbers. This latter
fact also follows from the Hodge index theorem, which gives the precise congruence (1).

6. The Chern–Hodge ring

6.1 Unitary bordism
We now recall the classical results about the complex bordism ring ΩU

∗ =
⊕∞

n=0 ΩU
n that we shall

need. By results of Milnor [Mil60, Tho95] and Novikov [Nov62] this is a polynomial ring over Z
on countably many generators βi, one for every complex dimension i. In particular, the degree
n part ΩU

n is a free Z-module of rank p(n), the number of partitions of n. Two stably almost
complex manifolds of the same dimension have the same Chern numbers if and only if they
represent the same element in ΩU

∗ .
The βi are commonly referred to as a basis sequence, and we will need to discuss some

special choices of such basis sequences. An element βn ∈ ΩU
n can be taken as a generator over Z

if and only if a certain linear combination of Chern numbers sn, referred to as the Thom–Milnor
number, satisfies sn(βn) =±1 if n+ 1 is not a prime power, and sn(βn) =±p if n+ 1 is a power
of the prime p.

In the case of ΩU
∗ ⊗Q one may take βi = CP i as a basis sequence, but this is not a basis

sequence over Z. Milnor proved that one can obtain a basis sequence over Z by considering
formal Z-linear combinations of complex projective spaces and of smooth hypersurfaces H ⊂
CP k × CP i+1−k of bidegree (1, 1), cf. [Tho95] and [Mil07, pp. 249–252]. It follows that one may
take (disconnected) projective, in particular Kähler, manifolds for the generators of ΩU

∗ over Z.
These projective manifolds are very special, in that they are birational to CP i.

Lemma 7. Milnor manifolds, that is, smooth hypersurfaces H ⊂ CP k × CP i+1−k of bidegree
(1, 1), are rational.

Proof. Let x and y be homogeneous coordinates on CP k respectively CP i+1−k. In an affine chart
Ck × Ci+1−k = Ci+1 given by x0 6= 0 6= y0, say, the defining equation of H of bidegree (1, 1) in x
and y becomes a quadratic equation in the coordinates of Ci+1. Therefore H is birational to an
irreducible quadric in CP i+1, which is well known to be rational. 2

Finally the Todd genus Td: ΩU
∗ −→Hir∗ is the ring homomorphism sending a bordism class

[M ] to (Td0(M) + Td1(M)y + · · ·+ Tdn(M)yn)zn, where the Tdp are certain combinations of
Chern numbers. By the Hirzebruch–Riemann–Roch theorem one has Tdp = χp =

∑
q(−1)qhp,q.

6.2 Combining the Hodge and bordism rings
We now consider finite linear combinations of equidimensional compact Kähler manifolds with
coefficients in Z, and identify two such linear combinations if they have the same dimensions
and the same Hodge and Chern numbers. The set of equivalence classes is naturally a graded
ring, graded by the dimension, with multiplication induced by the Cartesian product of Kähler
manifolds. We call this the Chern–Hodge ring CH∗.

The degree n part CHn of the Chern–Hodge ring is the diagonal submodule ∆n ⊂Hn ⊕ ΩU
n

generated by all
(Hx,y,z(Mn), [Mn]) ∈Hn ⊕ ΩU

n ,
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where M runs over compact Kähler manifolds of complex dimension n and the square brackets
denote bordism classes.

Proposition 2. The diagonal submodule ∆n is the kernel of the surjective homomorphism

h : Hn ⊕ ΩU
n −→Hirn

(Hx,y,z(M), [N ]) 7−→ χ(M)− Td(N),

where χ : H∗ −→Hir∗ is the Hirzebruch genus, and Td: ΩU
∗ −→Hir∗ is the Todd genus.

Proof. The surjectivity of h follows from the surjectivity of χ proved in Theorem 8.
By the Hirzebruch–Riemann–Roch theorem ∆n ⊂ ker(h). To check the reverse inclusion

consider an element (Hx,y,z(M), [N ]) ∈ ker(h). This means χ(M) = Td(N), and so, applying
HRR to N , χ(M) = χ(N). Since by Theorem 8 the kernel of χ is the principal ideal generated
by an elliptic curve E, we conclude that in the Hodge ring the difference of M and N is of the
form E · P , where P is a homogeneous polynomial of degree n− 1 in the generators of H∗. Thus
in Hn ⊕ ΩU

n we may write

(Hx,y,z(M), [N ]) = (Hx,y,z(N), [N ]) + (Hx,y,z(E · P ), 0).

Since an elliptic curve E represents zero in the bordism ring, we have (Hx,y,z(E · P ), 0) =
(Hx,y,z(E · P ), [E · P ]), and so the second summand on the right-hand side is in the diagonal
submodule. As the first summand is trivially in ∆n, we have now proved ker(h)⊂∆n. 2

As a consequence of Proposition 2, CHn = ∆n is a free Z-module of rank

rk CHn = rkHn + rk ΩU
n − rkHirn

=
[
n+ 2

2

]
·
[
n+ 3

2

]
+ p(n)−

[
n+ 2

2

]
=
[
n+ 2

2

]
·
[
n+ 1

2

]
+ p(n).

The structure of the Chern–Hodge ring is described by the following result.

Theorem 12. Let β1 = CP 1, β2, β3, . . . be Z-linear combinations of Kähler manifolds forming a
basis sequence for the complex bordism ring ΩU

∗ , and let Pi(E, β1, β2) be the unique polynomial
in E, β1 and β2 having the same image in the Hodge ring as βi. Then the Chern–Hodge ring CH∗
is isomorphic as a graded ring to the quotient of Z[E, β1, β2, β3, . . .] by the ideal I generated by
all E(βi − Pi(E, β1, β2)).

Proof. In degree 2 the Thom–Milnor number s2 of a Kähler surface equals c21 − 2c2, which is 3
times the signature. Since β2 is a generator of the bordism ring, we have s2(β2) =±3, so β2 has
signature ±1. By Corollary 3 this means that H∗ = Z[E, β1, β2]. Therefore, for each βi there is
indeed a unique polynomial Pi(E, β1, β2) having the same image as βi in H∗.

Consider the canonical ring homomorphism

φ : Z[E, β1, β2, β3, . . .]−→ CH∗.

We first prove that φ is surjective. Let M be a compact Kähler manifold of dimension n, and
[M ] ∈ ΩU

n its bordism class. We need to show that (Hx,y,z(M), [M ]) ∈ Im(φ). Since the βi form
a basis sequence for the bordism ring, there is a unique homogeneous polynomial P of degree
n in the βi such that [M ] = [P (βi, . . . , βn)] ∈ ΩU

n . We then have φ(P ) = (Hx,y,z(P ), [M ]) ∈ CHn.
Moreover, Hx,y,z(P )−Hx,y,z(M) is in the kernel of the Hirzebruch genus, which by Theorem 8
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is the ideal (E)⊂H∗. Thus, in H∗ we may write M = P + EQ, where Q is a homogeneous
polynomial of degree n− 1 in E, β1 and β2. Since E maps to zero in the bordism ring, we
conclude φ(P + EQ) = (Hx,y,z(M), [M ]). This completes the proof of surjectivity.

Finally we need to show that ker(φ) = I. By the definition of I, we have I ⊂ ker(φ), and so
φ descends to the quotient Z[E, β1, β2, β3, . . .]/I. The degree n part of this quotient surjects to
CHn, which is a free module of rank[

n+ 2
2

]
·
[
n+ 1

2

]
+ p(n),

where p(n) = rk ΩU
n is the number of partitions of n. Looking at the definition of I we see that

the degree n part of the quotient Z[E, β1, β2, β3, . . .]/I is generated as a Z-module by rk CHn

many monomials. Since we know already that φ is surjective, this shows that φ is injective, and
therefore an isomorphism. 2

We can now generalize Theorem 7 from the Hodge to the Chern–Hodge ring.

Theorem 13. Let I ⊂ CH∗ be the ideal generated by differences of birational smooth complex
projective varieties. Then there is a basis sequence for the bordism ring with β1 = CP 1 and
βi ∈ I for all i> 2. Furthermore, I is the kernel of the composition

CH∗
p−→H∗

b−→ Z[y, z],

where p : CH∗ −→H∗ is the projection and b : H∗ −→ Z[y, z] is given by setting x= 0 in the
Hodge polynomials.

Proof. Take β1 = CP 1, and CP 2 − CP 1 × CP 1 =−C as the generator β2 in degree 2. In higher
degrees we take the Milnor generators, which are formal linear combinations of projective spaces
and of Milnor manifolds, and, like in degree 2, subtract from each projective space or Milnor
manifold a copy of βn

1 = CP 1 × · · · × CP 1. This does not change the property of being generators
(over Z), but, after this subtraction, we have generators βi which for i> 2 are contained in I by
Lemma 7. This completes the proof of the first statement. For the second statement note that
by Theorem 7 the ideal I is contained in the kernel of b ◦ p. Conversely, our choice of generators
shows that ker(b ◦ p)⊂ I. 2

As a consequence of this result, Theorem 2 holds for combinations of Hodge and Chern
numbers.

Corollary 8. The mod m reduction of an integral linear combination of Hodge and Chern
numbers is a birational invariant of smooth complex projective varieties if and only if after
adding a suitable combination of the χp − Tdp it is congruent to a linear combination of the
h0,q plus a linear combination of Chern numbers that vanishes mod m when evaluated on any
smooth complex projective variety.

One should keep in mind that the Hodge numbers in this statement are, as always, taken
modulo the Kähler symmetries. The corresponding statement over Q follows from the statement
about congruences.

7. The general Hirzebruch problem

Finally we address the general version of Hirzebruch’s Problem 31 from [Hir54] asking which
linear combinations of Hodge and Chern numbers are topological invariants. This combines the
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work about Hodge numbers in § 5 above with the work on Chern numbers in [Kot12]. The first
step is the following result.

Theorem 14. The ideal J in CH∗ ⊗Q generated by differences of homeomorphic projective
varieties is the kernel of the forgetful homomorphism

F : CH∗ ⊗Q−→P∗ ⊗Q.

In degrees > 3 this ideal coincides with the one generated by differences of diffeomorphic
projective varieties.

Proof. Since Poincaré polynomials are homeomorphism invariants, it is clear that J ⊂ ker(F ).
By [Kot12, Theorem 10] there is a basis sequence β1 = CP 1, β2, β3, . . . for ΩU

∗ ⊗Q with βi ∈ J
for all i> 2. On the one hand, this means that, in the description of CH∗ ⊗Q as a quotient of the
polynomial ring Q[E, β1, β2, β3, . . .] given by Theorem 12, the only monomials in the generators
whose residue classes are not necessarily in J are those involving only E and β1. On the other
hand, it is clear from Corollary 1 that the residue class of a non-trivial polynomial in E and β1

cannot be in ker(F ). Thus ker(F ) is the ideal generated by the βi with i> 2, and is therefore
contained in J . This proves the first statement in the theorem.

For the second statement note that the βi used above are in fact differences of diffeomorphic
projective varieties as soon as i> 3, see [Kot12, Theorem 9], and that the same is true for
β1 · β2 and β2 · β2. The generator β2 is a difference of orientation-reversingly homeomorphic
simply connected algebraic surfaces X and Y . As in the proof of Theorem 11 above it follows
from Lemma 6 that E ×X and E × Y are diffeomorphic, and so E · β2 is also a difference of
diffeomorphic projective varieties. 2

Next we look at oriented topological invariants. For this it is convenient to introduce
the oriented analogue of the Chern–Hodge ring. Consider formal Z-linear combinations of
equidimensional closed oriented smooth manifolds, and identify two such combinations if they
have the same dimension, the same Betti numbers, and the same Pontryagin numbers. The
quotient is again a graded ring, which we call the Pontryagin–Poincaré ring PP∗, graded by
the dimension. By Corollary 2 there are no Q-linear relations between the Betti and Pontryagin
numbers. Therefore, by the classical result of Thom on the oriented bordism ring, we conclude

PP∗ ⊗Q = (P∗ ⊗Q)⊕ (ΩSO
∗ ⊗Q),

where ΩSO
∗ denotes the oriented bordism ring.

Theorem 15. The forgetful homomorphism

F̃ : CH∗ ⊗Q−→PP∗ ⊗Q

is surjective onto the even-degree part of PP∗ ⊗Q. Its kernel is the ideal JO in CH∗ ⊗Q
generated by differences of orientation-preservingly diffeomorphic smooth complex projective
varieties.

Proof. Let E be an elliptic curve and β1 = CP 1, both considered as elements in CH∗ ⊗Q. By
Corollary 1 all Q-linear combinations of Betti numbers in even dimensions are detected by
polynomials in F̃ (E) and F̃ (β1). These elements in PP∗ ⊗Q have trivial Pontryagin numbers.
Using the same basis sequence βi as in the previous proof, we see that the images F̃ (βi) have
trivial Betti numbers if i> 2, but any non-trivial linear combination of Pontryagin numbers
is detected by polynomials in the F̃ (βi) with even i. This proves that the image of F̃ is the
even-degree part of PP∗ ⊗Q.
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It is clear that JO ⊂ ker(F̃ ) since Betti and Pontryagin numbers are oriented diffeomorphism
invariants. By definition, JO is a subideal of J , which, by the previous theorem, equals ker(F ).

Using the same basis sequence as in the previous proof, J = ker(F ) is the ideal generated by
all βi with i> 2. By [Kot12, Theorem 7], this basis sequence has the property that for odd i> 3
the elements βi and β1 · βi−1 are in JO. We also know that, for all i> 2, E · βi is a difference of
diffeomorphic projective varieties. Since E admits orientation-reversing self-diffeomorphisms we
have E · βi ∈ JO.

By the proof of surjectivity of F̃ onto the even-degree part of PP∗ ⊗Q, no non-trivial
polynomial in the βi with i even can be in ker(F̃ ). Thus ker(F̃ ) is the ideal generated by the
residue classes of the βi with odd i> 3, and by the β1 · βj and E · βj with j even. All these
generators are in JO, and so ker(F̃ )⊂ JO. This completes the proof. 2

Remark 5. In Theorems 14 and 15 we worked over Q in order to be able to use the special basis
sequences βn for the unitary bordism ring constructed in [Kot12]. For n> 5 we could use instead
certain generators for ΩU

∗ ⊗ Z[12 ] constructed in [Sch, Proposition 4.4]. A generator β2 with all
the required properties, that would also work after inverting only 2, was obtained in the proof of
Theorem 10 above, but in degrees n= 3 or 4 we do not have any alternative generators. Checking
the numerical factors in [Kot12, Proposition 15], it turns out that the β3 used in [Kot12] and
in the above proofs works for ΩU

∗ ⊗ Z[12 ], but the β4 used there requires one to invert 3, in
addition to inverting 2. Therefore, Theorems 14 and 15 are true for CH∗ ⊗ Z[16 ].

We can finally prove Theorem 4.

Proof of Theorem 4. The vector space dual to CHn ⊗Q is made up of Q-linear combinations of
Hodge and Chern numbers, modulo the linear combinations of the χp − Tdp, and modulo the
implicit Kähler symmetries. If a linear form on CHn ⊗Q defines an unoriented homeomorphism
invariant, or an unoriented diffeomorphism invariant in dimension n> 3, then by Theorem 14
the corresponding homomorphism ϕ factors through F , and so reduces to a combination of
Betti numbers. Conversely, linear combinations of Betti numbers are of course homeomorphism-
invariant. This completes the proof of the second statement.

By Theorem 15 a linear form on CHn ⊗Q that defines an oriented diffeomorphism invariant
factors through F̃ , and therefore reduces to a combination of Betti and Pontryagin numbers,
which make up the linear forms on PP2n ⊗Q. Conversely, these linear combinations are
invariant under orientation-preserving diffeomorphisms, and even under orientation-preserving
homeomorphisms by a result of Novikov [Nov65]. This completes the proof of the first
statement. 2
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