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ABSTRACT

Let F' be a non-Archimedean locally compact field of residual characteristic p with
Weil group Wr. Let ¢ be an irreducible smooth complex representation of Wg, realized
as the Langlands parameter of an irreducible cuspidal representation m of a general
linear group over F. In an earlier paper we showed that the ramification structure
of o is determined by the fine structure of the endo-class © of the simple character
contained in 7, in the sense of Bushnell and Kutzko. The connection is made via the
Herbrand function ¥g of @. In this paper we concentrate on the fundamental Carayol
case in which o is totally wildly ramified with Swan exponent not divisible by p. We
show that, for such o, the associated Herbrand function satisfies a certain functional
equation, and that this property essentially characterizes this class of representations.
We calculate Wg explicitly, in terms of a classical Herbrand function arising naturally
from the classification of simple characters. We describe exactly the class of functions
arising as Herbrand functions ¥ =, as = varies over the set of totally wild endo-classes of
Carayol type. In a separate argument, we derive a complete description of the restriction
of o to any ramification subgroup and hence a detailed interpretation of the Herbrand
function. This gives concrete information concerning the Langlands correspondence.
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1. Let F' be a non-Archimedean, locally compact field with residual characteristic p. Let Wp
be the Weil group of a separable closure F'/F. For a real variable x > 0, let Rp(xz) = W%,
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C. J. BUSHNELL AND G. HENNIART

be the corresponding ramification subgroup of Wp and R} (z) the closure of Uysz Re(y)-
We use the conventions of [Ser68] here, so that Rp(0) is the inertia group Jr and R%(0) is the
wild inertia group Prp in Wg. If G is any of this list of locally profinite groups, § will denote
the set of equivalence classes of irreducible, smooth, complex representations of 5. We shall
be concerned with the ramification structure of certain ¢ € Wpg, that is, the structure of the
restricted representations o | Rp(z) and o | R}.(z), for > 0.

On the other side, let A%(F) denote the set of equivalence classes of irreducible, cuspidal,
complex representations of the general linear group GL,,(F'), n > 1, and set GLp = Uzt AX(F).

For 7 € GLp, write gr(m) = n to indicate m € A%(F). Such a representation 7 contains a simple
character 0 in GLy(F) [BK93] and, up to conjugation, only one [BH13]. The endo-class O
of 0, is therefore uniquely determined by 7. Let E(F") denote the set of endo-classes of simple
characters over F. (For the notion of endo-class, see [BH96] or the summary in any of [Busl4,
BHO03, BH13].)

Denote by 7 + Uw the Langlands correspondence C/%I;F — \/AVF [HT01, Hen00, LRS93,
Sch13]. Writing o = L7, the fine structure of the endo-class @, and the ramification structure
of o determine each other [BH17, 6.5 Corollary]. The relationship is expressed via a certain
Herbrand function ¥g_ attached to the endo-class ©;. In this paper we consider a particularly
interesting class of representations, comprising what we call Carayol representations. We
compute the associated Herbrand functions. We list the functions which arise as Herbrand
functions. We interpret the results in terms of the ramification structure of the associated Galois
representations, from which we extract information about the Langlands correspondence.

2. We review the background from [BH17] with as little formality as possible. If 7 € GLp and
o = L7 € Wp, the endo-class ©, determines the restriction o | Pr. More precisely, o defines an

element [0 of the orbit space WF\‘JADF, namely the orbit of irreducible components of o | Pp.
The Langlands correspondence induces a canonical bijection ([BH03, 8.2 Theorem], [BH14b, 6.1])

e +— "6
by .
[Mn)¢ = “0,, w<cGLp.

Results developed in [BH96, BH99, BH03, BHO5a, BHO5b, BH10] and particularly [BH14b] show
that the map (A) is central to understanding of the Langlands correspondence.

3. The starting point of [BH17] is that each of the sets E(F), Wp\ﬁp carries a canonical
ultrametric. That on €(F), denoted by A, is built on the fact that simple characters are characters
of compact groups carrying canonical filtrations, and those filtrations provide a medium via
which the characters may be compared. The ultrametric A relates to Swan exponents of pairs of
representations, as defined from the local constants of [JPS83, Sha84]. Let © € E(F') and choose
e GL r such that ©, = ©. There is a unique continuous function @g(z), = > 0, such that
sw(7 X p)

PolbE 0D = ) (o)

for any p € GL . The function @¢ is piecewise linear, strictly increasing and convex. It is given by
an explicit formula [BH17, (4.4.1)] derived from the conductor formula of [BHK98, 6.5 Theorem].
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CARAYOL REPRESENTATIONS

We call @g the structure function of 6.
The ultrametric on Wp\Pp, denoted by A, is defined by comparing representations via the

canonical filtration of Pr by ramification groups: for o, 7 € Wpg,
A([O’]S_, [T]S_) =inf{z >0: HOHI{RF(x)(O',T) # 0}.

The ultrametric A likewise relates to Swan exponents of tensor products of pairs of
representations of W [Hei96]. For ¢ € Wp, there is a unique continuous function X, (x),
x > 0, such that
sw(d ® )
Yo (A(lo)F, 7)) = ————
0'( ([0]07[7—]0 )) dlmUdlmT’

for all 7 € \/AVF The function X, is piecewise linear, strictly increasing and convex. It is given
by a formula derived from the ramification structure of o, reproduced in (2.2.2) below. If X, is
smooth at x, its derivative satisfies

20 (z) = dim Endg () (0) /(dim o)?.

We call X, the decomposition function of o: it depends only on the orbit [O‘]g.
If © € &(F), set ¥g = &' 0 X, for any o € Wy such that [0]] = “O. The Langlands
correspondence respects Swan exponents of pairs and dim(Lw) = gr(m), m € GLF, so

To(A(lO,L2) = A6,5), = c&(F).

The function Vg is called the Herbrand function of ©. It is continuous, strictly increasing and
piecewise linear.

If we take the view that © € E(F') has been given, in terms of the standard classification
from [BK93], it is a simple matter to write down the function @g. The Interpolation Theorem
[BH17, 7.5] shows, in principle, how to compute Wg directly from ©, without reference to “6.
It yields the decomposition function Y, and therefore a numerical account of the ramification
structure of o, just in terms of ©. The Interpolation Theorem is not easy to apply directly, but
it is the foundation of much of what we do here.

4. We specify the classes of representation on which we focus.

Let © € E(F). Assuming, as we invariably do, that © is non-trivial, it is the endo-class of
a simple character 6 € C(a, ) attached to a simple stratum [a,m, 0, 5] in some matrix algebra
M, (F) (following the conventions of [BK93]). In particular, § € GL,,(F') and the algebra F'[5] is
a field: one says that F'[3] is a parameter field for ©. The positive integers deg © = [F[5]: F] and
eo = e(F[f]|F) are invariants of ©. The slope ¢o of O, defined by ¢o = m/e,, where eq is the
period of the hereditary op-order a, is likewise an invariant of @. If 7 € GL F satisfies @, = O,
then ¢o = sw(m)/gr(m). However, neither § nor © determines the parameter field F[f5]: see the
later parts of §6.

Say that © € E(F) is totally wild if deg® = eg = p", for an integer r > 0. If O is totally
wild, say that it is of Carayol type if deg @ > 1 and the integer egge is not divisible by p. Let
EC(F) denote the set of endo-classes © € &(F) that are totally wild of Carayol type. We aim to
calculate Wg for all © € EC(F).

We concentrate on this case for two reasons. First, [BH17, 7.1 Proposition] reduces the
problem of calculating Herbrand functions to the totally wild case. Second, we have to work
with simple characters. The definition of simple character in [BK93] is rigidly hierarchical in
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C. J. BUSHNELL AND G. HENNIART

nature and proofs are almost always inductive along this hierarchy. The first inductive step
concerns the case where the element /3 (as above) is minimal over F' [BK93, (1.4.14)]. For totally
wild endo-classes, this is the Carayol case.

On the other side, say that o € w Fis totally wild if the restriction o | P is irreducible. In
particular, dim o = p", for some r > 0. Denote by er the set of totally wild elements of W r. An
endo-class © € &(F) is then totally wild if and only if there exists o € WY W' such that [o]f = O
(cf. [BH14b, §6]). Say that o € W‘I’iir is of Carayol type if dimo # 1 and p does not divide sw(o).
Thus o € \/A\?"}r is of Carayol type if and only if [o]f = 1O, for some © € E€°(F). We shall see
that these representations ¢ exhibit a family of quite singular properties, reflecting the special
nature of the endo-classes © € EC(F).

5. We review our main results. They are organized into three principal theorems, that
complement and support each other, followed by a substantial application.

For any © € E(F), the Herbrand function Wg(x) satisfies Wg(0) = 0 and Vg(z) = = for
r > ¢o [BH17, 6.2 Proposition]. The derivative ¥jy(z) has only finitely many discontinuities in
the interesting region 0 < x < ¢g: we call them the jumps of ¥o. When © € E°(F), the function
Uo(x) is convez in the region 0 < = < ¢g. The reasons for this are simple (§2.4), but the property
is very useful.

THEOREM 1. Let © € €°(F). The graph y = Yo (z), 0 < x < g, is symmetric with respect to
the line z+y = co. That is,

o —x=Vg(co —¥o(r)), 0<z<50. (B)

Theorem 1 has a satisfying converse. The group of characters of U} - acts on the set E(F)
following the natural twisting action of characters of F* or Wg on CL F Or WF We denote this
action by (x,©) — xO. It has the property ¥V, = Vg [BH17, 7.4 Proposition]. We obtain the
following corollary.

COROLLARY. Let @ € E(F) be totally wild of degree p", for some r > 1, and suppose that

So < sye for all characters x of U}. The function Vg then has the symmetry property (B) if and
only if © € EC(F).

Theorem 1, together with some preliminary calculations, suggests the definition of a family
of elementary functions. Let » > 1 and let E/F be a totally ramified field extension of degree
p". Let m be a positive integer not divisible by p and set ¢ = m/p". Let ¢p/p be the classical
Herbrand function of E/F [Del84, Ser68]. Define ¢ by the equation ¢+ p~"1g,p(c) = . There is
then a unique function Q\II(E/FS) (2), defined for 0 < = < ¢, such that the graph y = Q\II(E/FS) (z)
is symmetric with respect to the line x+y = ¢ and Q\P(E/F,g) (x) = p*TwE/F(a?), for0<z<e
Functions of this form will be called bi-Herbrand functions.

Our strategy is to identify Ug, © € EC(F), as a specific bi-Herbrand function. Let deg @ = p".
There is a simple stratum [a, m, 0, o in M- (F') such that © is the endo-class of some 6 € C(a, @).
Thus Fla]/F' is totally ramified of degree p" and p does not divide m = —vpjy (). In this
notation, o = m/p". If ||C(a, «)|| denotes the set of endo-classes of elements of C(a,a), then
1e(a, @)|| € E°(F).

The set ||C(a, )| is not well adapted to our purposes, because the function © — ¥g is
not constant there. Indeed, it may vary widely: see 7.2 Theorem 1. To overcome this problem,
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CARAYOL REPRESENTATIONS

we specify a non-empty subset C*(a, «) of C(a, ), using an explicit formula given in 7.1 below:
we say that 6 conforms to a to indicate 6 € C*(a, a). Let ||C*(a, «)|| denote the set of endo-classes
of characters 6 € C*(a, a).

THEOREM 2. Let © € €°(F) have degree p” and o = m/p". There is a simple stratum [a, m, 0, o/
in My (F') such that © € ||C*(a,a)|. For any such stratum,

Vo(z) =V (pa)/Fe) (@), 0< < 0. (C)
Theorem 2 has the following consequence.

COROLLARY. Let E/F be a totally ramified field extension of degree p", r > 1, and let m be a
positive integer not divisible by p. There exists © € SC(F), with parameter field E/F, such that

Vo(z) =Y (g/mm/pry(2), 0<z<m/p" = o

The corollary is an effective tool for constructing representations of Wgr with specified
ramification properties. An application of the technique is given in 9.7.

6. Our third result looks at the problem from the Galois side. Let o € W}’:ﬁr be of Carayol type
and dimension p". Define © € E€°(F) by [o]f = *O. As r > 1, the function g has at least one
jump [BH17, 7.7]. If Ug has exactly one jump, we say that o is H-singular. In §8, we analyse
the structure of such representations in some detail: they belong to a rather special class of
‘Heisenberg representations’ (as one says).

Without restriction on the number of jumps, define a number cg by the equation

co +Vo(co) =co, O €&C(F).

By the symmetry of Theorem 1, cg is a jump of ¥g if and only if g has an odd number of
jumps and, in that case, cg is the middle one.

THEOREM 3. Let o € W‘Iﬁir be of Carayol type and dimension p". Let © € &C(F) satisfy
Lo = [of.

(1) The restriction o | Rj(ce) is a direct sum of characters.

(2) Let & be a character of R}.(co) occurring in o, let Wr, be the Wr-stabilizer of §, and let

o¢ be the natural representation of Wy, on the {-isotypic subspace of o | :R;;(C@). The field
extension L¢/F' is totally ramified of degree dividing p" and o = Ind, ¢/F O¢ Moreover,

Yo(z)=p " r(z), 0<z<co. (D)

(3) If Yo has an odd number of jumps, then o is irreducible, totally wild, H-singular, of Carayol
type and of dimension pT/[Lg (F) # 1.
(4) If Vo has an even number of jumps, then o¢ is a character and [L¢: F]) = p".

By symmetry, relation (D) determines ¥g completely. Any two choices of the character £
are Wp-conjugate, so the same applies to the field L¢. The field extension L¢/F is not usually
Galois but, after a suitable tamely ramified base field extension, it has a canonical presentation
as a tower of elementary abelian extensions faithfully reflecting the ramification structure of o.
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The canonical presentation of o as an induced representation,
w
g = IndLg/F O¢ = IndeE O¢,

is derived from arithmetic considerations. It can claim to be more natural than anything provided
by a purely group-theoretic approach.

The restrictions o | Rp(z), o | Rf(z) follow a clear pattern, underlying the symmetry property
of Theorem 1. To give the flavour, suppose there are at least two jumps. Let j be the least and 7
the greatest. The restriction o | Rp(j) is irreducible, while o | R1(7) is a multiple of a character.
The restriction o |R}(j) is a multiplicity-free direct sum of irreducible representations while
o|Rp(7) is a direct sum of characters, its isotypic components being the restrictions of the
irreducible components of o | fR;C (7). The pattern repeats for the second and penultimate jump,
and so on.

7. We now have two expressions, (C) and (D), for the Herbrand function Ug of © € £°(F).
Together they show how to read the algebraic structure of the decompositions o | Rp(z), z > 0,
directly from the presentation © € ||C*(a,a)||. Our final tranche of results treats this in some
detail.

In the same context, the number cg (as in part 6 above) and the function ¥g, as © ranges over
|C*(a, a)||, depend only on . We therefore denote them by ¢, and ¥, respectively. Let joo () =
Joo(F[a]|F') be the largest jump of the classical Herbrand function t¢p,)/r. The definition of
2111( Fla]/Fsse) @nd Theorem 2 show that W, has an even number of jumps if and only if jo. (@) < ca-

Let G*(«) be the set of o € W%r such that [o]g € *[|€*(a,a)|l.

THEOREM 4A. If 0,7 € §*(a), the representations o|Rf(ca), T|Rf(ca) are equivalent. In
particular, any character & of Rj(cn) occurring in o | R (ca) also occurs in 7| Rj(cq).

All representations o € §*(«) therefore give rise to the same conjugacy class of field extensions
L¢/F and the associated representations o¢ all have the same dimension p"/[L¢ : F.

To go further, there is a second field extension to be taken into account. If p € Wp has
dimension n, let p: Wgp — PGL,(C) be the associated projective representation. The kernel
of p is of the form Wg, where E/F is finite and Galois. One calls E//F the centric field of p.
Returmng to the main toplc let Ly¢/L¢ be the centric field of the H-singular representation
o¢ € er The extension ng /L¢ is Galois. It is non-trivial if and only if dimoe > 1, that is,
Q\IJ( Fla]/Fe) has an odd number of jumps.

Let wo = wjq)/r be the wild exponent (1.6.1) of the field extension F[a]/F. We consider
two cases. Say that « is x-exceptional if joo(at) = ¢, and the integer I, = m—w, is even and
positive. Otherwise, say that « is x-ordinary. (This terminology is suggested by the usage of
[Kut84], but is not equivalent to it.)

For our next result, we fix a character £ of R}.(c,) occurring in o € §*(a) and abbreviate

L =L, LU = LU ¢ Let T; /F be the maximal tame sub-extension of LU /L. Let d, be the number
of characters x of W, such that ¢ ® o¢ = 0.

THEOREM 4B.

(1) If a is x-ordinary, then L, = Ly, for all 5,7 € §*(c).
(2) If a is x-exceptional, then T;, = T; and d, = d., for all 0,7 € §*(c). There are at most d,
Galois extensions of the form L. /L, T € §*(«).
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The bound in part (2) is achieved when [T, : L] is not divisible by p. (In general, we do not
know what happens here, but p can divide [T; : L]: see 9.6 Example.) In part (1), the set §*(«)
bears a canonical structure as principal homogeneous space over an easily described group of
characters of L*.

8. We give an overview of our methods and the layout of the paper.

Section 1 is a free-standing account of the classical Herbrand functions ¢/, ¢/ of a finite
field extension E/F. For Galois extensions E/F, much of what we need can be deduced from
the standard account in [Ser68]. We develop the same level of detail for non-Galois extensions,
starting from Deligne’s notes [Del84].

The development proper starts with §2. We introduce the main players and fix the basic
notation. We take a simple stratum [a,m, 0, o] in the matrix algebra My (F), r > 1, as in part 4
above, and a simple character 6 € €(a, @) of endo-class @. Thus © € E°(F) and ¢g = m/p". The
Interpolation Theorem of [BH17] readily yields Vg (z) = p~ "¢ p[o)/r(7) in the range 0 < = < ¢ /2.
In the region ¢o/2 < Yg(z) < o it interprets the value Vg (x) in terms of intertwining properties
of certain simple strata.

Section 3 is devoted to the proof of Theorem 1. The argument is couched almost entirely in
terms of Galois representations. Take o € W} of dimension greater than 1. After a tame base
field extension, [BH17, 8.3 Theorem]| gives a sufficiently canonical presentation o = Indg,p 7,
where K/F is cyclic of degree p. After an elementary change of variables, the jumps of X are
among those of X, but one or two of them are ‘flattened’, in an obvious sense. One of these is
invariably the first. If o is of Carayol type, the other is the last: this follows from an application of
the conductor formula of [BHK98, 6.5 Theorem]|, which also gives a relation between the first and
last jumps. One may then assume that 7 has the symmetry property and proceed by induction
on dimension.

Section 4 makes a transition back to the GL side. The combination of convexity and symmetry
imposes significant restrictions on the piecewise linear graph y = Ug(x) in the relevant region
0 < z < ¢o. We abstract these properties in the definition of the bi-Herbrand function 2\11( E/Fq)
Much of the section is devoted to listing elementary, but useful, geometric properties of the
graphs of ¥g and 2111( E/F,)- Our strategy is to identify Wg as a bi-Herbrand function. In many
cases, one can do that immediately; see 4.6 Example. This simple case also has a role in the
more complicated arguments that follow.

Sections 5 and 6 are highly technical in nature, preparing the way for the arguments of § 7. In
§5, we use the Interpolation Theorem to identify, via some delicate intertwining and conjugacy
arguments, a subset of ||C(a, )| on which the Herbrand function ¥g takes the expected value
2\11( Fla]/Fse)- Lhe specification of this set, which we temporarily call L4, is quite subtle. There
is nothing canonical or natural about £, but it is a vital computational device.

The set C(a,a) does not determine «, although it does determine a and the integer m.
Let P(a,«) be the set of 8 € GL,(F) for which [a,m,0,3] is a simple stratum satisfying
C(a,B) = C(a,). In §6 we examine various ways in which one can construct elements (3 of
P(a, o) while keeping track of the relation between the sets £, and Lg.

In §7 we first define the subset C*(a, «) of simple characters 6 € C(a, «) that conform to .
We show that, if 8" € C(a,a), there exists o/ € P(a,a’) to which ¢’ conforms. The calculations
in §§5 and 6 give a first result (7.2 Theorem 1) from which Theorem 2 follows.

With §8 we return to the Galois side. We first recast the general theory of representations
of, loosely speaking, Heisenberg type and so identify the class of representations with Herbrand
function having a single jump. This is in preparation for §9, where we prove Theorem 3.
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That result is given in two tranches. In the first, (9.2), we assume that o is ‘absolutely wild’, in
the sense that its centric field extension is totally wildly ramified. The argument there develops
the method of §3.

The general case is presented separately as 9.5 Corollary. The transition to the general case
is, we found, surprising in both its simplicity and its exactness. It marks a change in direction in
the paper. Until the end of § 7 we rely on the fact that, when using the Interpolation Theorem to
compute the Herbrand function, one can impose an arbitrary finite, tamely ramified, base field
extension while losing no control: the method is illustrated in the proof of 2.6 Proposition and
then used repeatedly until the end of the proof of 9.2 Theorem. From 9.5 Corollary on, we have
to take account of the tame structures destroyed by such a process. Theorems 4A and 4B follow
in § 10, where we combine and compare the main results of §§7 and 9.

Some parts of Theorems 4 are foreshadowed, often in more detail, in the classical literature
of dimension p [Hen84, Kut80, Kut84, Moe90]. There is a device from [Moe90] that allows us
to remove the distinction between ordinary and exceptional elements «, provided p # 2. We
summarize this in 10.6, and then briefly review the historical context.

Background and notation

General notations are quite familiar: op is the discrete valuation ring in F', pr is the maximal
ideal of oF and v is the normalized additive valuation. For k > 1, U ]} is the congruence unit
group 1+p’1%. Similarly, if a is a hereditary op-order in some matrix algebra, then U¥ = 14-p*,
where p is the Jacobson radical rad a of a. For real x, x — [z] is the greatest integer function.
If E/F is a finite field extension, then g r, ¢g/p are the classical Herbrand functions
discussed in § 1. If E/F is Galois and I"' = Gal(E/F), then Iy, I'*, a > 0, are the ramification
subgroups of I" in the lower, upper numbering conventions of [Ser68]. The symbols Wg, W r, Pr,
Pp, GLp, E(F), Lo, [0]f, Rp(z), Rf(x) all retain the meaning given them in the introduction.
Notation concerned with simple characters is all taken from [BK93, BH96]. For the special cases
considered here, full definitions are given in 2.1-2.3. The broader summary in [Busl4] may be
found helpful. Certain special notations recur sporadically. Their definitions may be found as
follows: g (2.1), 65 (2.2), W (3.2), Wawr (3.2), EC(F) (2.3), joo(E|F) (1.5), wg/p (1.6), €* (7.1).

1. Classical Herbrand functions

Let E/F be a finite, separable field extension. As we go through the paper, we rely on properties
of the classical Herbrand function 1/ and its inverse pp, . For Galois extensions F/F, many
of these are to be found in [Ser68]. In the general case, we develop them from the outline in
[Del84]. Beyond that, we need estimates of the jumps of g/, that is, the discontinuities of
the derivative v, / p(x), > 0. With only minor changes, the formalism applies equally well to
inseparable extensions F/F': we indicate how this is done in 1.7.

We conclude the section with what seems to be a novel result on the structure of a broad
class of totally ramified extensions. We do not need this until near the end of the paper but it
fits well in the present context. The reader may wish to skip that, or even the entire section,
referring back to it as needed.

1.1 Let E/F be a finite Galois extension. The Herbrand function ¢/ p(z) is defined, for x > —1,
in [Ser68, IV § 3] but we shall always assume = > 0. If K/F is a Galois extension contained in F,
the fundamental transitivity property Y g/r =Yg/ © Y i/F holds. If the finite separable extension
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E/F is not Galois, we follow [Del84]. Let E'/F be a finite Galois extension containing E. The
function g/ /g is positive and strictly increasing, so we may set

VYE/F :%}}/EoiﬂE//F (1.1.1)
Because of the transitivity property for Galois extensions, this definition does not depend on the
choice of E’/F. The relation

YE/F =VE/K °VK/F (1.1.2)

then holds for any tower F' C K C E of finite separable extensions. In all cases, ¢, shall be
the inverse function for ¢/,

op/poYp/r(z) =2 =vYgpovgr(x), x>0 (1.1.3)

LEMMA.

(1) If K/F is finite and tamely ramified, then i /p(x) = ex, where e = e(K|F).

(2) If E/F is finite separable and K/F is finite and tamely ramified, with e(K|F) = e, then
VYer/k(T) = e(EK|E)Yg/p(z/e). If E/F is totally wildly ramified, then ¢pg/k(z) =
ep/r(x/e).

Proof. Part (1) follows immediately from the definitions here and in [Ser68]. By (1.1.2) and

part (1), Ypx/r(T) = YEK /K YK )/F(T) = YEK/K(€2). On the other hand, Yk, () = YEk/E o
VYg/r(r) = e(EK|E)Yg/p(7), whence part (2) follows. O

The lemma reduces most questions to the totally wildly ramified case.
1.2 We list some properties of the graph y = ¢ g, p(z), v > 0.

PROPOSITION 1. Let E/F be a finite separable extension and write e = e(E|F) = egp”, where
ep is an integer not divisible by p.

(1) The function v/ is continuous, piecewise linear, strictly increasing and convex.
(2) If x is sufficiently large, then @D;J/F(x) =e.

(3) There exists ¢ > 0 such that Y, p(x) = eox, for 0 < z < e.

(4) The derivative 1/}35/1, is continuous except at a finite number of points.

Proof. All assertions are standard when E/F is Galois, and (2)—(4) then follow from (1.1.2) in
general. In (1), the first two properties are clear while, by (3), ¢, / (x) = eo = 1 for = positive
and sufficiently small. It is enough, therefore, to show that 1 g, is convex. By 1.1 Lemma (2),
we need only prove that Y/ is convex for some finite tame extension K /F. We choose K/F
to be the maximal tame sub-extension of the normal closure E'/F of E/F. This reduces us to
the case in which E’/F is totally wildly ramified. If £ = F', there is nothing to prove, so assume
otherwise. The proper subgroup Gal(E’/E) of the finite p-group Gal(E’/F) is contained in a
normal subgroup of index p. That is, there is a Galois sub-extension F'/F of E/F of degree p.
In the relation ¢Yp/p = Yg/p © Y p, the function g p is convex since F'/F is Galois. By
induction on degree, g/ is convex, whence so is Y/ . O

This technique of the proof of the proposition will be used again, so we make a formal
definition.
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DEFINITION. Let E/F be a finite separable extension, with normal closure E’/F'. Say that E/F
is absolutely wildly ramified if E'/F is totally wildly ramified.

In the notation of the definition, let K/F be the maximal tame sub-extension of E'/F. The
extension FK /K is then absolutely wildly ramified. From the proof of Proposition 1, we extract
a useful property.

Gross. If E/F is absolutely wildly ramified, there exists a Galois extension F'/F, of degree p,
such that F' C E.

We give a second application.

PROPOSITION 2. Let E/F be finite, separable and totally wildly ramified. If 1, is smooth at
x, then the value IZJIE/F(I) is a non-negative power of p.

Proof. The result is standard when E/F is Galois. Otherwise, let K/F be finite and tamely
ramified. Part (2) of 1.1 Lemma implies that the result holds for E/F if and only if it holds
for EK/K. It is therefore enough to treat the case of E/F absolutely wild. As in the Gloss, let
F'/F be a sub-extension of E/F that is Galois of degree p. The extension F’/F has the desired
property since it is Galois. By induction on the degree, we may assume that it holds equally for
E/F’. The proposition then follows from the transitivity relation ¢ JF = YE/F oYpp. |

1.3 As in the Galois case, the function g p reflects properties of the norm map Ng,p :
E* — %,

PROPOSITION. Let E/F be a finite separable extension. Let x be a character of F* such that
sw(x) = k > 1. The character x o Ng,p of E* then has the following properties:

(1) sw(xoNg/p) < ¢¥p/r(k);
(2) if¢jE/F is continuous at k, then sw(x o Ng,p) = ¥g/r(k).

Proof. The result is standard when E/F' is Galois [Ser68, V Proposition 9].

Suppose next that E/F' is tamely ramified and set e = e(E|F). Thus ¢g/p(v) = ex, x > 0.
If x is a character of F* with sw(x) =k > 1, then sw(x o Ng/p) = ek and there is nothing to
prove.

Transitivity now reduces us to the case where E/F is totally wildly ramified. Also, if K/F
is a finite tame extension, the result holds for E/F' if and only if it holds for EK/K. We may
therefore assume that E/F is absolutely wildly ramified. Let F’ be a field, F C F' C E, such
that F'/F is Galois of degree p (as in 1.2 Gloss). The result holds for the extension F’/F and
so, in general, by induction on [E': F]. O

DEFINITION. A jump of ¢ g/ p is a point > 0 at which the derivative (s /F is not continuous.
Let Jg,p denote the set of jumps of Y/ p.

The set Jp,p is finite by 1.2 Proposition 1(4).

COROLLARY. Let E/F be totally wildly ramified, and let K/F be a finite tame extension, with
e = e(K|F). If x is a character of K* with sw(x) =k > 1, such that e"'k ¢ Jgp, then

sw(x o Npg/x) = Vpr/x(k) = ep/p(e k).
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Proof. The second equality is 1.1 Lemma, whence Jgg = eJg/p. The result now follows from
the proposition. O

1.4 Another familiar property extends to the general case.

PROPOSITION. Let E/F be a finite separable extension. If € > 0, then

Rr(e) N"Wg = Re(Yg/r(e)),
RE(€) NWE = RE(E/r(€)).

Proof. If E/F is Galois, the result follows from [Ser68, IV Proposition 14]. The case of E/F
tame readily follows. If K/F is a finite tame extension, the result therefore holds for E/F if
and only if it holds for EK/K (cf. 1.1 Lemma). Thus we need only treat the case where E/F is
absolutely wildly ramified. There is a Galois sub-extension F’/F of E/F of degree p. If F/ = E,
there is nothing to do, so we assume otherwise. We have

RF(E) NWg = RF(G) NWg "N Wg
= R (Y yp(€)) NWEg
= Re(We/p (VY r(e)))
= Re(Yr/r(e),

by induction on [E: F]. The second assertion follows. O
For a sharper result of this kind, see 1.9 Corollary 2 below.
1.5 Let joo(E|F) be the largest element of Jg,p.

PROPOSITION. Let E/F be separable and totally wildly ramified. If E/F is the normal closure
of E/F, then joo (E|F) = joo(E|F).

Proof. Let K/F be a finite tame extension. The result then holds for E/F if and only if it holds
for EK/K. We may therefore assume that E/F is absolutely wildly ramified.
The relation ¢5,p = ¥/ p © g /r implies that

Jg/p = Jg/p U wE}F(JE/E)'

We have to show that j(E|F) is the largest element of this set. Set I' = Gal(E/F) and A =
Gal(E/E). The definition of I, [Ser68, IV §1] gives A, = I, N A, for all z > 0. Let koo be the
largest jump of I' in this numbering. Thus I # {1} = Ik, for all ¢ > 0. As E/F is the
least Galois extension containing F, so ﬂwe r7A~y~! = 1. That is, A has no non-trivial subgroup
normal in I'. Since E/F is totally wildly ramified, I, is central in I', so Ay = I}, N A
is normal in I', whence Ay, = 1. The largest jump of A is therefore strictly less than k.
Translating back, the largest jump joo (E|E) of Y/ 18 strictly less than VYe/r(joo(E|F)). O

1.6 Let E/F be a finite separable extension. Denote by dg /r the differental exponent of F /F:
thus p%E/F is the different of E//F'. Define the wild exponent wg/p of E/F by

We record, for use throughout the paper, some basic facts involving the wild exponent.
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LEMMA. Let E/F be finite, with E C F.

(1) If FC K C E, then
wg/r = e(E|K)wg/p +wg/k-
(2) If 7 is an irreducible representation of Wg, then
sw(Indg/p 7) = (sw(7) + wg/p dimT) f(E|F).
In particular,
wg/p =sw(lndg,p 1g)/f(E|F),
where 1g is the trivial character of Wg.

Proof. Assertion (1) follows from the multiplicativity property of the different and a short
calculation. Part (2) follows from the corresponding properties of the Artin exponent [Ser68,
ch. VI §2]. O

The main business of the subsection concerns estimates relating the wild exponent wg,p to
the largest jump joo (E|F') of ¥/ p.

PROPOSITION. If E/F is separable and totally wildly ramified of degree p", then

VYep(r) =0T —wg/p, T2 joo(E|F).
Proof. Let K/F be tamely ramified with e = e(K|F'). Thus wgg,x = ewg/p by the lemma.
The result therefore holds for E/F if and only if it holds for FK/K. Taking K/F to be the
maximal tame sub-extension of the normal closure of E/F, we reduce to the case where E/F
is absolutely wildly ramified. Part (2) of 1.2 Proposition 1 implies that there is a constant cg/p
such that ¢g/p(z) = p'z — cgyp, for > joo(E|F). We show that cp/p = wg/p.

Let F'/F be a sub-extension of E/F that is Galois of degree p. In this case, joo(F'|F) is the
only jump of g/, and it equals wgr/p/(p—1) [Ser68, V §3]. The proposition thus holds for
F'/F.If E/F is Galois, we may assume inductively that cg/p = wg,pr. So, taking z sufficiently
large, we get

'z —cpp =Yg (Y p(x) = YE/p/(pr — W R)
=p'z— PTﬁle'/F —wg/p =P T —wWg/p,
by the lemma. Thus cg/p = wg/p when E/F is Galois.

Suppose that E/F is not Galois. The normal closure E'/F of E/F is totally wildly ramified
by hypothesis. So, with p* = [E’: F] and z sufficiently large, we get

Ve r(x) =p's —wpp = Ve E(VE/r(T))
=p" (P —cp/p) — wWE B
Thus wg/p = e(E'|E)cg/p — wgr/ g, and the lemma implies cg/p = wg/p. O

COROLLARY. Let E/F be totally wildly ramified of degree p". If joo = joo(E|F') is the largest

Jjump of Y /p, then
(0" —Djoo = wpyp > P (—1D)joo = Pl joo/2.

Moreover, wg/p = (p"—1)joo if and only if jo, is the only jump of Y /p.
Proof. Since g p(z) > x for all x > 0, the first inequality follows directly from the proposition,

likewise the final remark.
Observe that v, / plz) < p" 1, for all points 0 < = < joo at which the derivative is defined

(1.2 Proposition 2). The function 9(x) = g, p(z)—p"~ 'z is therefore decreasing on the interval
0 < 2 < jJoo- Thus J(joo) <0, 01 p'joc — wg/p < " Yoo, as required. O
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1.7 If E/F is a finite, purely inseparable extension, we set Vg p(r) =z, > 0. If E/F is a
finite extension, define

YE/F = VE/E, © VEy)F = VB, F (1.7.1)

where Ey/F is the maximal separable sub-extension of E/F. Assuming E # Ey, the derivative
of Y, satisfies wE/F(x) < [E: F] for all z. We therefore set joo(E|F) = oo when E/F is not
separable. With these definitions, all the results of 1.1-1.3, 1.5 and 1.6 remain valid.

1.8 We anticipate a phenomenon arising later on, in §§5 and 6.

Let E/F be totally ramified of degree p", r > 1. Thus F = F[a], where « is a root of
an Eisenstein polynomial f(X) = X?" + a1 X?" "' + .-+ + apr_1X + apr € 0p[X], and one has
dg/r = ve(f'(a)).

Set ag = 1. If E//F is inseparable, the coefficient a; is zero unless j = 0 (mod p). Each term
(p"—j)aja?~t in f'(a) vanishes, giving dp/p = Wg/p = 00.

PROPOSITION. Suppose E/F is separable and totally ramified of degree p”. There is an integer
k such that 0 < k < p"—1, and

_ s T_ 4 AJ—1 = [ r
dp/p = _min_ vp((p'—j)ajo’™") = k=1 (mod p").

In particular, wg/p = k (mod p). If ' has characteristic p, then k # 0 (mod p).
Proof. For 0 < j < p"—1, the term (p"—j)ajaj_1 is either zero or
vp((P"=j)aje? ) = j=1  (mod p).

This gives the expression for dg,p. If F' has characteristic p, any term with j =0 (mod p) has
valuation oo and the second assertion follows. O

If F has characteristic zero, an Eisenstein polynomial f(X) = XP—a gives a field extension
E/F of degree p such that wg,p =0 (mod p).

1.9 We prove a simple, but under-appreciated, result concerning absolutely wildly ramified
extensions E/F (1.2 Definition). It reappears naturally in the analysis of representations in §9.

Let E/F be a finite separable extension. As before, let Jg/p be the set of jumps of the
piecewise linear function ¢ g/p. For z > 0, define

w,(E|F) = lim Ul () [0y ().

By 1.2 Proposition 2, w,(E|F) is a non-negative power of p while w,(FE|F) > 1 if and only if
WS ']E/F

If E/F is a finite Galois extension with Gal(E/F) = I', we use the notation I'V* = | J
and similarly for the lower numbering.

z
z>yF ’

PROPOSITION. Let E/F be separable and absolutely wildly ramified. Let a be the least element
of JE/F

(1) The number a is an integer and there exists a character x of F* such that sw(x) = a
and X ONE/F =1.

1971

Downloaded from https://www.cambridge.org/core. UVA Universiteitsbibliotheek, on 20 May 2021 at 07:03:04, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/50010437X19007449


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X19007449
https://www.cambridge.org/core

C. J. BUSHNELL AND G. HENNIART

(2) Let D = D(;)(E|F) be the group of characters x of F'* such that sw(x) < a and
X o Ng/r = 1. All non-trivial elements of D have Swan exponent a, and D is elementary abelian
of order wq(E|F).

(3) If B4/ F is class field to the group D, then F'C Ey C E, g, /p(a) = a and
Je/e, = Ve r(Je/r) N {a}

Proof. We proceed by induction on [E: F]. If [E: F] = p then, since E/F is absolutely wild, it is
Galois and there is nothing to do. Assume, therefore, that [E: F] > p?. Since E/F is absolutely
wild, there is a Galois extension F’/F, of degree p, contained in E (1.2 Gloss). There is a
character ¢ of F'*, of order p, that vanishes on the group of norms from F’. Choose F’ so as to
minimize sw(¢). The integer ¢ = sw(¢) is a jump of ¥ g/p (1.3 Proposition), so ¢ > a. We show
that ¢ = a.

Suppose, for a contradiction, that ¢ > a. Thus a = ¢ g p(a) is a jump of ¢g/p and indeed
its least jump. By inductive hypothesis, a is an integer and there is a character y of F'* such
that x o Ng g = 1. Since ¢ > a, there is a unique character x; of F'* such that x = x1 0 Npr/p.
The character x; has order p, while sw(x1) = a and x1 o Ng/p = 1. The extension Fy /I that is
class field to x7 has the properties required of F'/F but sw(x1) < sw(¢). This contradicts our
hypothesis, and proves (1).

In (2), the group D is an abelian p-group, since [E: F] is a power of p. Let x be a character
of F* and suppose that sw(x) = b, 1 < b < a. Since b ¢ Jg/p, x © Ng/p is not trivial
by 1.3 Proposition, so x ¢ D. This proves the first assertion in (2). On the other hand, if
X € D, x # 1, then x? € D and sw(x?) < sw(x). Therefore x» = 1 and it follows that D is
elementary abelian.

To calculate the order of D, we first use part (1) to choose x € D, x # 1. Let F'/F be class
field to x. In particular, F/ C E and F’'/F is cyclic of degree p. The Herbrand function ¢z /F
has one jump, lying at a, and w,(F'|F') = p. Composition with Np//p gives a homomorphism
Dy (E|F) — D)(E|F') with kernel of order p, generated by x. The function ¢,z has no jump
strictly less than a, and w,(E|F') = p~lwy(E|F). If we(E|F') = 1, then D) (E|F’) is trivial,
whence D(1)(E|F') has order p = w,(E|F). Assume therefore that D;)(E|F) has order at least
p?, whence D(1y(E|F") has order at least p.

Let B} /F' be class field to the character group Dy (E|F’). Inductively, we can assume that
| Dy (E|F")| = wa(E|F"), s0 Y/ has least jump strictly greater than a. If A = Gal(F'/F),
then A = A® = A,. Thus A acts trivially on U}, /U ™. It follows that the extension Ef/F is
Galois, of degree pwq(E|F') = we(E|F) and ¢p/p has a unique jump, lying at a. Therefore
Gal(E}/F) is elementary abelian and class field to a subgroup of D(;)(E|F). Comparing orders,
this subgroup is the whole of D(y)(E|F), so E} = E1 and D(;)(E|F) has order w,(E|F).

This completes the proof of (2).

We now have
T 0<x<a,

’ 1.9.1
a+p’(r—a), a<x, (1.9.1)

op.r(@) = {
where p® = [E): F| = wo(E|F). The function 9 p,p, has no jump j such that j < a. At a =
Vg, r(a), wa(E|Er) = 1 = we(E|F)/wa(Er|F), so a & Jg/g,. On the other hand, if b > a, then
b is not a jump of g, ,p and therefore Wi /() (E|E1) = wp(E|F). In other words, b is a jump
of E/F if and only if ¢g, /p(b) is a jump of E/E;. Part (3) follows immediately. O
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COROLLARY 1. Let E/F be separable and absolutely wildly ramified. Let
J1<Jg2<-<jt
be the set of jumps of Y. There is a unique tower of fields
F=FEyCFE,CEyC---CE;=F (1.9.2)

with the following properties.

(1) For 1 <k <, the extension E}/E)_; is elementary abelian of degree w;, (E|F).
(2) For 1<k <t, the function ¢, /g, , has a unique jump, namely Vg, | /r(jk)-

Proof. One applies the proposition to the absolutely wildly ramified extension £/ F; and iterates.
O

We refer to the tower (1.9.2) as the elementary resolution of the absolutely wild extension
E/F. It gives a factorization

YE/F = VE, B, O VE,_1/E2© " O VEy B ©VE/F (1.9.3)

in which each factor g, /g, |, 1 < k <, has exactly one jump.
We conclude with an application needed in § 10.

COROLLARY 2. Let E/F be a finite separable extension that is not tamely ramified. If jo, =
Joo(E|F) is the largest jump of g/ then

Joo(E|F) =inf{z € R: Rp(x) C Wg}.
In particular, Wg contains R}.(joo) but not Rp(jiso).

Proof. The assertion is unaffected by tamely ramified base field extension, so we may assume
that E/F is absolutely wild. We use the notation of Corollary 1 and proceed by induction on
the number, t say, of jumps. If ¢ = 1, then E = E;/F is elementary abelian with a single jump
J1 = jeo(E|F). Every non-trivial character x € D(;)(E|F) has Swan exponent j; and so is trivial
on R} (j1), but not on Rp(j1). Since Wg is the intersection of the kernels of all x € D) (E|F),
the assertion follows.

So we take t > 1. Inductively we may assume that

inf{z : Rg, () C WEg} = joo(E|E1) = Vp, /r(Joo(E|F)).

For x > j1 = ¥p,/r(j1), we have Rp(x) = RE, (Yg, /r(7)) by the first case and 1.4 Proposition.
The assertion now follows. O

2. Certain simple characters

The first part of this section provides a brief aide-mémoire for those facts and methods from
[BHI96, BH17, BK93] that will be used frequently. It relies on parts 2 and 3 of the introduction
for background but is focused on the detail of the special cases with which we are concerned.
The later §§2.4-2.7 give partial results concerning Herbrand functions in those special cases.
The notation we set out here remains standard throughout the paper.
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2.1 Let E(F) be the set of endo-classes of simple characters over F. When working with this
set, we follow the scheme of [BH17, 4.2] (apart from one minor adjustment of notation).

To each @ € E(F) one attaches positive integer invariants deg @, eg and a non-negative
rational invariant ¢g. (In [BH17], ¢g is me.) We will never be concerned with the case ¢ = 0,
so assume gg > 0. Let up be a character of F' of level one. By definition, pup is trivial on pp, but
not trivial on op. There exist a simple stratum [a,m, 0, 5] in a matrix ring M, (F") and a simple
character 0 € C(a,0, 8, ur) of endo-class ©. (Here, we have used the full notation of [BK93,
(3.2.1), (3.2.3)], but we almost invariably abbreviate it to C(a, 3).) The algebra E = F[f] is a
field and

deg@ = [E:F|, eg=¢(E|F), <co=m/eq,

where e, is the op-period of the hereditary op-order a. We shall say that 0 is a realization of ©
on [a,m,0, 3], and that E/F is a parameter field for ©.

While deg ©, eg and <o are invariants of ©, there will often be many choices for the field
extension E/F, even up to isomorphism. The number ¢g has a useful interpretation. If 7 € GLp
contains a simple character of endo-class ©, then, in the notation of the introduction, ¢g =
swi(m)/gr(m)._ A

Let 0 € Wy, Thus o = Ly, for some m € GLp. If © is the endo-class of a simple character
contained in 7, then sw(o) = sw(7) and

sw(o)/dimo = sw(m)/gr(m) = so. (2.1.1)

2.2 Attached to © € E(F) is a structure function Po(x), z > 0, as defined in the introduction. It
is given by the explicit formula (4.4.1) of [BH17] which we do not need to repeat: for the special
cases considered here, see (2.4.1) below. If 7 € GL r contains a simple character of endo-class ©,
the definition gives

Po(0) = sw(7 x 7)/gr(m)?. (2.2.1)

Let 0 € Wg. The orbit [o]d € WF\f]A)F and the canonical map E(F) — WF\HADF, 0 - Lo,
are as in the introduction.

Attached to o is a decomposition function Xy(x), x > 0, defined as follows [BH17, (3.1.2)].
Let o act on the vector space V, so that the semisimple representation 5@ o actson X =V V.
For § > 0, let X (§) be the space of R}(6)-fixed points in X. This has a unique R}.(§)-complement
X'(6) in X. The spaces X (§), X' () provide semisimple, smooth representations of Wg. One sets

Y,(8) = (dim o) ~2(8 dim X (8) + sw X' (¥)). (2.2.2)

The function X, depends only on the orbit [o]f € W P\Pr.

Obviously, X, (0) =sw(6®0)/(dimo)2 Let 0 = I, 7 € GLp, and let © be the endo-class of
a simple character contained in 7. Since the Langlands correspondence preserves Swan exponents
of pairs, we have
sw(d®o) sw(T xm)

2o (0) = (dim 0)? - gr(m)? = 26(0)-

DEFINITION 1. Let © € €(F') and let 0 € Wy satisfy [0]§ = 6. Define the Herbrand function
Vo of O by Vg = &g 0 X,

The function Vg is continuous, strictly increasing and piecewise linear. It does not depend
on the choice of ¢ in its definition. It satisfies ¥ (0) = 0 and Yo(z) = = for = > ¢.
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DEFINITION 2. A jump of Vg is a point z, 0 < z < g, at which Wy is not continuous.

In many cases, the derivative ¥y, has a discontinuity at ¢o, but it holds no interest so we
exclude it as a jump. The derivative Wy, takes only finitely many values, and the function Vg
has only finitely many jumps.

We often use the following property. Let K/F' be a finite, tamely ramified field extension and
set e = e(K|F). Let ©F € &(K) be a K/F-lift of © [BH96, 9.7]. By [BH17, 7.1 Proposition],

Ug(x) =Vgr(ex)/e, x=0. (2.2.3)

In Galois-theoretic terms, if ¢ € Wg and [o]d = Lo, then L(OF) =[7]§ € Wi\ P, for some
irreducible component 7 of o | W this follows from [BH14b, 6.2 Proposition].

2.3 Let © € E(F). Say that O is totally wild if deg® = eg = p", for an integer r > 0. So if ©
is totally wild and if E/F is a parameter field for ©, then E/F is totally ramified of degree p”.
If © is totally wild and K/F is a finite tame extension, then © has a unique K/F-lift and that
lift is totally wild.

Suppose that © € E(F) is totally wild of degree p". Say that © is of Carayol type if r > 1
and the integer p"cg is not divisible by p (cf. [Car84]).

Notation. Let £°(F) denote the set of © € &(F) that are totally wild of Carayol type.

Let © € EC(F) have degree p". There is a simple stratum [a,m, 0, a] in M = M, (F) carrying
a realization of ©. We describe this following the definitions in [BK93, ch. 3]. The integer m is
p"so, the field extension E' = F[a]/F is totally ramified of degree p" and a is the unique hereditary
op-order in M that is stable under conjugation by E*. The integer m = —vg(«) is not divisible
by p, so the element « is minimal over F, in the sense of [BK93, (1.4.14)]. We form the group

HY(a,a) = UL U™/,
Set pyr = protrys, where trpy : M — F is the matrix trace. Define a function pys %« on M by
par x o(z) = py(a(x—1)), x € M. (2.3.1)

In particular, pps * o represents a character of the group U; Hm/2 1t s trivial on U™ but
non-trivial on UM™. The set C(a, ) = C(a,0, , pps) consists of all characters ¥ of H'(a, a) such

that ‘ Uule/Q] = Up ok ‘ U‘}Hm/z}. By hypothesis, there exists 6 € C(a, ) of endo-class 6.

Remarks.

(1) The endo-class of any ¥ € C(a, a) is totally wild of Carayol type.

(2) Characters 91,92 € C(a,«) are endo-equivalent if and only if they are equal; this follows
from [BK93] (3.3.2) and is peculiar to this situation.

(3) In the same vein, let ¢ be an integer, 0 < t < [m/2]. The restricted characters ¥; | H'**(a, a)
intertwine if and only if they are equal.

In (3), H'*'(a, a) means H'(a,a) N UM
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2.4 We specialize to the case of © € E°(F).

PROPOSITION. Let © € E°(F) have degree p". Choose o € Wy such that [o]d = Lo.
(1) The function $g satisfies

QSQ(O) +p7rx7 0<z < SO,

N e (2.4.1)

Po(z) = {

(2) Yo(0) =0 and Vg(x) =z, for = > co.
(3) There exists € > 0 such that

.
Vola) =40 ST
P, So—e <z <¢o.

=~
S— N N N

The function Vg is convex in the region 0 < x < ¢g.
If0 < x <gg, then 0 < ¥g(z) < x.
The jumps of Wg are the discontinuities of X' (z).

(@4

~ o~ —~
(@)}

If @ = m/p" then
Bo(0) = 5,(0) = m(y 1)/ (242)

Proof. Part (1) is the definition (4.4.1) in [BH17], and part (2) has already been noted. Part (3)
is an instance of [BH17, 7.6 Proposition]. The function X, is convex (2.2.2), and so (4) follows
from (1). Part (5) now follows from (4) and (3). Part (6) follows from (1). Part (7) follows from
(2.2.1) and [BH17, 4.1 Proposition]. O

2.5 Key arguments will rely on the Interpolation Theorem of [BH17, 7.5]. We give an overview
of that result, as it applies to @ € E°(F).

DEFINITION. A twisting datum over F is a triple (k, ¢, x) in which
(1) k> 1 is an integer;

(2) cis an element of F' such that vp(c) = —k;

(3) x is a character of F'*, of Swan exponent k, such that

x(z) = pp *c(x), x¢€ U}Hkm.
Let © € E°(F) have degree p". Suppose that O is the endo-class of 6 € C(a, ), exactly as
in 2.3. If (k, ¢, x) is a twisting datum over F', the character x o det of GL,-(F') satisfies
x(detz) = upr x c(x), x¢€ Uiﬂprk/z}.
Following the discussion in [BH17, 7.4], the quadruple [a,m,0, a+c| is a simple stratum in M,
such that H'(a+c,a) = H'(a,a). The character x0 : z — x(detz)0(z), x € H'(a,a), lies in
C(a, a+c). Denote by x© the endo-class of x6.
Let A be the ultrametric on €(F') defined in [BH17, 5.1] (see also the Notes below). We first
give a preliminary version of the result, which follows from [BH17, 7.3 Proposition].

PROPOSITION 1. Let k > 1 be an integer that is not a jump of Vg. If (k, ¢, x) is a twisting datum
over F', then Vg(k) = A(xO, O). In particular, A(xO,O) depends only on k, but not on ¢ or x.
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Notes.

(1) In the context of the proposition, A(x©@,©0) = t/p", where ¢ is the least integer such that
the characters 0 | H' ™ (a, a), X0 | H' (v, a) intertwine in GL,(F); that is the definition of
A in this case.

(2) The characters 6 | H' (i, a), x0 | H'*(a, a) intertwine in GL,(F) if and only if they are
conjugate in GL,-(F') [BK93, (3.5.11)]. If this holds, the conjugation can be implemented
by an element of Uj.

(3) When £ is a jump of g, A(xO, ) may depend on y, not only on k.

We recall more about the notion of tame lifting, as it applies to © € €°(F). Let K/F be
a finite, tamely ramified field extension with e(K|F) = e. We form simple characters over K
relative to the character ux = pp o Trg)p of K. There is a unique simple stratum in M, (K)
of the form [a®,em, 0, a]. Setting EK = K|a] C M, (K), there is a unique 6% € €(aX, o) such
that 6% (z) = 0(Ngk/p(x)), € ULg. The endo-class OF of 0 lies in EC(K) and is the unique
K /F-lift of ©. Combining Proposition 1 with (2.2.3), we obtain the following result.

PROPOSITION 2. Let K/F be a finite tame extension with e = e(K|F), and let Ax be the
canonical ultrametric on E(K). Let k > 1 be an integer such that k/e is not a jump of Vg. If
(k,c,x) is a twisting datum over K, then

Vo(k/e) = Vg (k) /e = A (xOFK,0%)/e.

Proposition 2 summarizes the Interpolation Theorem.

2.6 Again let © € EC(F) be of degree p". Choose a simple stratum [a,m, 0, a] in M = M, (F)
carrying a realization 6 € C(a, o) of © (as in 2.3). We use the Interpolation Theorem to determine
Vg on half of (the interesting part of) its domain.

ProprosITION. Writing E = Fla]/F, the Herbrand function Yo satisfies
Vo(z) =p "vg/r(r), 0<2<50/2,

where ¢/ p is the classical Herbrand function of 1.1, 1.7.

Proof. Let k be an integer, 0 < k < ¢g/2, which is not a jump of either function vg/p, ¥e.

Let (k, x,c) be a twisting datum over F'. The character x o det of GL,(F) is trivial on ULtek,

Since p"k < [m/2], it is also trivial on the group UaH[m/Q}. The character x0 : y — x(det y)0(y),
y € H'(,a), thus lies in €(a, @) (2.3). The characters x6, 6 intertwine on a group H'*(a,a) =
H(a,a)nUM t > 0, if and only if they are equal there (2.3 Remark (3)). So, recalling 2.5
Note 1, A(©, xO) = t/p" where t is the least non-negative integer such that y o det is trivial
on U;rt. We have x o det(y) = x o Ng/p(y), y € E*. That k is not a jump of g, implies
t =g r(k) (1.3 Proposition) and the result follows from 2.5 Proposition 1 in this case.

In general, it is enough to prove the desired identity on a dense set of points x satisfying
0 < z < ¢o/2. Take x = a/b, for positive integers a and b with b not divisible by p. Assume
that x is not a jump of ¥ g, or ¥g. Let K/F be a finite, tamely ramified field extension with
e(K|F) = b. If ©K is the unique K/F-lift of ©, then bx is not a jump of YEK/K or Yox. The
first case of the argument, 2.5 Proposition 2 and 1.1 Lemma together yield

Vo(z) = VYox(a)/b=p "Ypr/k(a)/b=p "Yg/r(v),

as required. O
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Remark. In the context of the proposition, there is no reason to demand that F/F be separable.
This condition can be imposed, at the cost of a technical argument, but it is easier and more
natural to extend the definition of the classical Herbrand function as in 1.7.

2.7 Remaining in the situation of 2.6, we refine the other part of 2.4 Proposition (3). We use
the concept of formal intertwining of strata (as in [BK93, 2.6]).

PROPOSITION. Let k be an integer, 0 < k < g, which is not a jump of ¥g. Let t = p"Vg(k).
If 2t > m, then t is the least integer such that the strata [a,m,t, ], [a,m,t, a+c] intertwine
formally.

Proof. Let | be an integer such that 2{ > m. We have

O(x) = par * ax), " R
TR SR R CE R

In this situation, an element g of GL,-(F) intertwines | UMt with x6| UM if and only if

g Y a+pHgN (at+ctpl) # B, that is, g intertwines the strata [a,m, [, o], [a, m, I, 4] formally.
The result thus follows from 2.5 Proposition 1. |

3. Functional equation

Let © € EC(F) (2.3 Notation) be of degree p". In particular, 7 > 1. In this section, we uncover
a profound and surprising property of the function ¥g.

3.1 The main result is the following theorem.
THEOREM. Let © € EC(F) be of degree p”, r > 1. The Herbrand function ¥g satisfies
o —x=VYg(co —Vo(x)), 0<z<so. (3.1.1)
For many arguments, it is convenient to have an alternative formulation of (3.1.1).

SYMMETRY. The function Vg satisfies 0 < Vg (x) < z, for 0 < x < ¢o. In that range, the graph
y = Yeo(x) is symmetric with respect to the line x4y = ¢o.

The first assertion here is 2.4 Proposition (5). Reflection in the line 24y = ¢g is the map

i @ (z,y) — (s0—¥,50—2),

so the two formulations are indeed equivalent.

Before embarking on the proof of (3.1.1), we observe that it has a converse. As recalled in 2.5,
the set &(F) carries a canonical action (x,©) — xO of the group of characters y of Uj. It has
the property ¥, = ¥g [BH17, 7.4 Proposition].

COROLLARY. Let © € E(F') be totally wild, with deg© = p", r > 1. Suppose that g < ¢yo, for
all characters x of Uk. The function Vg satisfies (3.1.1) if and only if © € EC(F).
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Proof. The hypothesis on © is equivalent to ¢g = ap'™", for integers a Z 0 (mod p), 0 <t < r
[BH17, 7.6 Remark]. In particular, © € E°(F) if and only if ¢ = 0. By [BH17, 7.6 Proposition],
there exist € > 0, § > 0, such that
T 0<x <e,
o) = {7

—1

Pl -6 <z <<p.

If the functional equation holds for @, then t = 0 and so @ € E°(F). The converse is the
theorem. 0O

The proof of (3.1.1) occupies the entire section. The first intermediate result, 3.4 Theorem,
is entirely Galois-theoretic and applies to a relatively wide class of representations. The
second, 3.5 Theorem, applies only to representations of Carayol type, and its proof depends
on an intervention from the GL side, in the form of a case of the conductor formula of [BHK98].
That result forms the first step in an inductive proof of the theorem above.

3.2 Let o € WF Let ¢, be the slope of o. That is,

¢ = inf{e > 0: Rp(e) C Kero}

= sw(o)/dimo, (3:2.1)

by [Hen80, Théoreme 3.5]. If ¢, > 0, then o | Rp(s,) does not contain the trivial character.

DEFINITION. Let o0 € Wp.

(1) Say that o is totally wild if the restriction o | Pr of o to Pp is irreducible. Let \/A\?%r be the
set of totally wild elements o of \//\Vp Say that o € W/A\?V}r is of Carayol type if p does not
divide sw(o) and dimo # 1.

(2) Let 0 € \/A\?Vliir have dimension p". Say that o is absolutely wild if the associated projective
representation & : Wrp — PGL,-(C) factors through a finite Galois group Gal(E/F'), with
E/F totally wildly ramified. Write W%Wr for the set of absolutely wild elements o of WVF‘“

We remark that, if o € \/AV"}T, then dimo = p”, for some r > 0.

LEMMA. Let o € W}’:ﬁr Let K/F be a finite, tamely ramified field extension and set e(K|F) = e.

K

The representation o™ = o | Wi is irreducible. It lies in \/AV}V{ and

Y,(x)=e 12 x(ex), x>0.
One may choose K/F so that o% € W%g"

Proof. The relation between decomposition functions is [BH17, 3.2 Proposition]. The projective
representation ¢ factors through a finite Galois group Gal(E/F'). The second assertion holds
when K/F is the maximal tame sub-extension of E/F. O

3.3 Leto € \//\VVF Directly from the definition recalled in (2.2.2), X, (z) = z, for z > ¢,—e and
some € > 0. Thus all discontinuities of X7 (x) lie in the region 0 < z < ¢,. We call such points
the jumps of X,.

We assemble some properties of absolutely wild representations.
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LEMMA 1. Let o € Wa“’r have dimension p”, r > 1. Let a be the least jump of the function X,.

(1) The jump a is an integer and there exists a character x of W, with sw(x) = a, such that
XRQo=o.

(2) If X' is a non-trivial character of W such that ¥’ ® o = o, then sw(x') > a.

(3) The character x of (1) has order p. If K/F is the cyclic extension such that Wi = Ker x,
there exists T € Wf}?’ " such that 0 = Indg,p 7. The representation 7 is uniquely determined
up to conjugation by Gal(K/F).

(4) Suppose, in (3), that r > 2. The representation 7 is then of Carayol type if and only if o is
of Carayol type.

Proof. Parts (1)-(3) are [BH17, 8.3 Theorem]. Let wg,r be the wild exponent of the extension
K/F (1.6.1). The formula sw(o) = sw(7) + dim(7) wg/p (1.6 Lemma) gives sw(o) = sw(7)
(mod p) and part (4) follows. O

Continuing in the situation of Lemma 1, we gather some standard facts from § 1 and [Ser68],
for convenience of reference.

LEMMA 2.

(1) The point a is the unique ramification jump of the extension K/F, in either upper or lower
numbering.

(2) The group Wg N Rp(a) is of index p in Rp(a) and fR;(a) C Wk, while Wrp = WgRp(a).

(3) The following relations hold:

. fRF( ) WK, O0<e<a
Ricle) = {RF«oK/F(e ), a<e
)

Ry (€) = Ryp(orsr(e), a<e

(4) The Herbrand function ¢y p is given by

() = x, 0< z<a,
PE/FAT) = a+ (z—a)/p, a< .

3.4 As in the first part of the proof of 3.1 Theorem, we develop 3.3 Lemma 1 using the same
notation. The first jump of X, is at a, x is a character of Wp such that sw(x) =a and y®oc X 0.
Again, Wg = Kerx and 0 = Indg,p 7, 7 € \//\\7%”

For € > 0, set

de(0) = dim Endg, () (o),

+ o .

d (o) = dim EndR;(e) (o).

Since Rp(e), RE(e) are normal subgroups of the pro-p group Pp, the integers de(o), d (o) are
non-negative powers of p. Referring back to the definition (2.2.2) of X,, p~2"d.(c) is the left
derivative of the piecewise linear function X, at the point e. Likewise, p~2"df (o) is the right
derivative of X, at e. It follows that dc(o) = df (o) unless € is a jump of X,. If € is a jump of
Yo, then we(o) = df(0)/d.(o) is a positive power of p. Since

—2r
/ T, 0<x <,
Yolw) = {1, So—0 < T,
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for some ¢ > 0, we have
H we(o) = H d; (0)/de(o) = P
e>0 e>0

We make parallel definitions,

Fde(7) = dim Endg , (o)w (7),
rdf (1) = dim EndR;(E)mwK (1),
Fwe(r) = pdd (7)/pde(T).

The quotient we(o)/rw(7) is a power of p, and

H we(0)/Fwe () = p*. (3.4.1)
e>0

Remark. One can define d(7), etc., exactly as before, relative to the base field K. One then
has jde(7) = dy,, () (T) (cf. 3.3 Lemma 2), and similarly for the other functions. We use the
notation gd(7) to simplify comparison between the two base fields F' and K.

We continue with the notation from the start of the subsection: in particular, o € W%Wr. We
prove the following theorem.

THEOREM. Let v € Gal(K/F), v # 1. The quantity

c=cg/p(0) = inf{e > 0 : Homg, o)nw, (7,77) # 0} (3.4.2)
is independent of the choice of . The following properties hold.
(1) ¢>a.
(2) If ¢ > a, then we(0)/rwe(T) = we(o)/Fwe(T) = p, while we(o)/Fwe(r) = 1 for all other
values of € > 0.
(3) If c = a, then wy(0)/Fwa(T) = p?, while w(c)/Fw.(T) = 1 for all other values of ¢ > 0.

Proof. Let € > 0. The irreducible components of the semisimple representation 7| Wx N Rp(e)
are all Wg-conjugate and occur with the same multiplicity. Likewise for 77| Wpg N Rp(e).
Consequently,

HOHI:RF(G)QWK<T,T’Y) 20 — T’Y‘ZRF(G)QWK gT‘RF(G)ﬂWK.

This condition is surely independent of v # 1. If 0 < € < a, the function Y, is smooth at e,
whence o | Rp(e€) is irreducible. It is induced from 7| Wx N Rp(€), whence follows part (1) of the
theorem.

To proceed, we need another litany of notation. Let ¢ > 0 and choose an irreducible
component o of o | Rp(€). Let l(0) be the number of distinct Wg-conjugates of o, and m. (o) the
multiplicity of o¢ in o | Rp(€). Thus de(c) = l.(0)me(o)? while I(o)m.(c) is the Jordan-Holder
length of o | Rp(e). All of these numbers are non- negative powers of p.

Similarly, choose an irreducible component o of o.|R}f(e) and define I (o), mF (o) in
the same manner. Thus df (o) = I} (0)m} (0)? and [7(o)mS (o) is the Jordan—Hélder length of
o | Ri(e), all being non-negative powers of p.

In exactly the same way, let 7. be an irreducible component of 7| Wx N Rp(e) and 75 an
irreducible component of 7.| Wx N R}.(€). We take o = 7¢ for € > a and o = 7.7 for € > a
(cf. 3.3 Lemma 2).
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C. J. BUSHNELL AND G. HENNIART
LeEMMA 1. If ¥, is smooth at a point € > 0 then Y. is smooth at ¥y p(€).

Proof. Suppose first that € < a, so that ¥, r(€) = e. The definition of a ensures that the function
Y, is smooth at e. The representation 7 is irreducible on Rx (a) = Rp(a) N Wik, and so also on
Rk (€). Tt follows that X is smooth at e.

The function X, is not smooth at a, so take ¢ > a. Since Y, is smooth at e, [BH17,
8.1 Proposition| shows that the representation o, is irreducible on :R;(G) and that o, is not
Wp-conjugate to x ® e, for any character y # 1 of Rp(e)/R}.(€). We have taken 7. = e, s0 T
is irreducible on fR}(z/JK/F(e)) = R} (€), and it is not Wg-conjugate to 7. ® ¢, for any non-trivial
character ¢ of Rp (Vg p(€))/RE(Wk/r(€) = Rp(€)/Rf(€). Therefore Y- is smooth at ¢ /p(e),
as required. O

We assume henceforth that € > a and use the notation introduced for Lemma 1. The Wg-
stabilizer of (the isomorphism class of) o¢ is of the form G. = Wg_, for a finite field extension
E./F. Likewise, let G =W [org denote the Wp-stabilizer of 7. The W-stabilizer of 7. = o is
then Wi N Ge = Wk E,, and similarly for the objects labelled +.

LEMMA 2. If € > a, then
df (o) _ pdi (1) [KNE:F]
de(0) — pde(T) [KNES: F]’

The quotient of field degrees takes only the values 1 and p.

Proof. Since € > a,

me(o) = Z dim Homg,, (¢ (0e, 77)
YeGal(K/F)

= Z dim Homg,, (¢) (07, 7).
~EGal(K/F)

If o7 occurs in 7, then 07 = o9, for some § € Wy, and conversely. The sum is therefore effectively
taken over v € WgWpg /Wi = Gal(K/K N E,), so

me(o) = pme(7) p/[K N E, : F].
By definition, l.(0) = [E. : F] and f.(7) = [KE, : K| = [E: F]/[K N E¢ : F]. That is,
l(0) = fe(r) [K N E, : F).
Consequently,
de(0) = pde(7) p* /[K N E¢ : F]
and, likewise,
dr (o) = pdf (1) p?/[K N EF : F].

This proves the first assertion of the lemma.

As [K: F] = p, the quotient [K NE.:F|/[KNEY: F] may take only the values 1, p**. Tt
remains to show that the case [K N E.: F]/[K NE} : F] = p~! cannot arise. In other words, we
have to show that K N E, = F implies KNE} = F.

Suppose, therefore, that KNE, = F or, as amounts to the same, G:Wg = Wpg. The
restriction of 7 to Rp(e) is a multiple of > 50, with § ranging over G. N W\ Wy, while
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o |Rp(e) is a multiple of >4 o, with 8 € G \Wp. Our hypothesis K N E, = F implies that
the natural map Ge N W \Wgx — G\ Wr is bijective. We conclude that o | Rp(e) = p7|Rp(e),
whence o | R}.(€) = p7 | R}.(€). Put another way,

df (o) _ pdl(7)

de(o) a Fde(T)
so KN EF = F, as required. O

For ¢ as in (3.4.2), observe that
Homg . (cynwy (7, 77) = 0. (3.4.3)

Otherwise, the representation 7 ® 77 would have an irreducible component A for which Ker A
contained Rr(c) N"Wx = R (), where ¢ = g/ p(c). In that case, Ker A would contain Rx (c”),
for some ¢’ < ¢ ([BH17, 2.1 Proposition 1]). That is, Homg, () (7,77) # 0, contrary to the
definition of c.

LEMMA 3. If ¢ > ¢, then wy(0)/Fwg(T) = 1. If ¢ > a, then w.(o)/Fw.(T) = p.

Proof. Let ¢ > ¢, so that Homgy,, () (7,77) # 0. It follows that 7 is Rp(¢)-isomorphic to 77, for
all choices of ~. Therefore o | Rp(¢) is a sum of p copies of 7| Rp(¢) and so o | R} (¢) is a sum
of p copies of 7| R}.(¢). This implies wy(0) = pwy(7).

Suppose ¢ > a. We have Homg,.(;)mw, (7,77) = 0 while Homy;(c) (1,77) # 0. The second

property implies that G Wy = Wp, whence KNE} = F (notation as in the proof of Lemma 2).
The first property implies G- Wg # Wp, giving K C F.. From Lemma 2, we deduce that

we(0)/ pwe(T) = p. O
Consider now the situation at the point a.

LEMMA 4. Let 7y generate Gal(K/F).

(1) If HomR;(a) (1,77) =0, then ¢ > a and we(0)/Fpwe(T) = p.
(2) If HomR;(a) (1,77) # 0, then ¢ = a and wy(0)/ pw, (1) = p*.
Proof. The representation o | Rp(a) is irreducible and
0| Rp(a) = 3 Indyf () o 7| (Wi N Rp(a)
z€WK\Wr/Rp(a)
Rr(a
= Indy "D, o T (Wi N Rp(a)).

It follows that 7 is irreducible on R (a) = Rp(a) "Wk, and that the representations 77 | R (a),
v € Wg\Wp, are distinct.
Next,

Rt (a T
0| RE(a) = 3 Indwi(n)gz; w T Wk NRE(a))
€WK \W /R (a)

= Y 7 IRia)

'YGWK\WF
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The restrictions 77 | R}.(a) are either disjoint or identical. If they are disjoint, then
la (0) = Ay (T)p and mg (o) = pmg (7).
In this case,
dy (0) = pdy (T)p and 77| Ri(a) # 7| Rp(a), ¥ # 1.
If the 77 | R} (a) are identical, then
la (0) = Flg (7), mg (o) = pmg (T)p,
yielding
df(0) = pdf ()p* and 77 |Rj(a) = 7| R} (a).
Since dy(0) = pdo(7) = 1, the lemma follows. O

We prove the theorem. Part (1) has been done. Part (2) is given by Lemma 3, Lemma 4(1)
and (3.4.1). Part (3) follows from (3.4.1) and Lemma 4(2).

3.5 We continue in the situation of 3.4, except that we now specialize to representations of
Carayol type. Take K/F and cg/p(0) as in 3.4 Theorem.

THEOREM. Let o € W%Wr be of Carayol type and dimension p". Let a, be the least jump of the
function Y. The largest jump z, of X, is then

sw(o) — ag

Ro = CK/F(U) = G

Proof. We proceed by induction on r. Take r = 1. We then have X, (0) = (p—1)sw(o)/p? (2.4.2)
and Y, (z) = x for x > ¢, = sw(o)/p. In particular, 0 < a, < 25 < ¢5. In the region 0 < z < ¢,
the derivative X’ (r) takes the values p~2, 1 and, possibly, p~! (as follows from (2.2.2)). If
only the values p~2, 1 occur, then a, is the only jump. It lies at the intersection of the lines
y=p 2z+(p—1)sw(o)/p? and y = z, that is, a, = sw(c)/(1+p") = (sw(o)—a,)/p", as required.
If, on the other hand, X’ takes the value p~! on some interval, then z, is given by the intersection
of the lines y = x and y—X,(ay) = (r—a,)/p. Since X, (as) = p~2a, + Xy (0), the result follows
from a quick calculation.

Assume r > 2. From 3.3 Lemma 1 we recall the following result.

LEMMA 1. The representation 7 is absolutely wild of Carayol type and dimension p"~'.

We may therefore assume inductively that

r—1
9

zr = (sw(7T)—a-)/p
where a,; < z; are the first and last jumps of X.. We calculate a list of Swan exponents.

LEMMA 2.

(1) swie®o) = (p'—1)sw(o).

(2) sw(F®7)=(p"~'—1)sw(7).

(3) If vy generates Gal(K/F), then sw(7 @ 77) = p" Y (sw(7)—ay).
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Proof. The representations o, 7 are of Carayol type, so (1) and (2) are given by (2.4.2) and
(2.1.1). As in [BH17, (2.5.3)], set

Ak (p1, p2) = inf{x > 0 : Homg, (,)(p1, p2) # 0}.

Thus [BH17, 3.1.4]
sw(p1 ® p2)
dim(p1) dim(p2)
We started the proof of 3.4 Theorem by observing that, in effect, Ax(7,77) is independent of

v € Gal(K/F), v # 1. It follows that sw(7 ® 77) does not depend on 7. With this in mind, we
apply the induction formula for the Swan conductor (1.6 Lemma) to the relations

= Zpl (AK(pla p2))a pi € Wk.

FRo|Wr= Y  FoT1),
vEGal(K/F)

By 1.6 Proposition, wg,p = (p—1)a,. So, for any v # 1,
(p—1)sw(7 @ 77) =sw(6 @ o) —sw(F @ 7) — p* L (p—1)a,,
whence (3) follows. O

Remark. The formulae in parts (1) and (2) of Lemma 2 rely ultimately on the conductor formula
of [BHK9S]|. This is the only intervention from the GL side in the proofs of the theorems of 3.4
and 3.5. It is, however, crucial.

The definition of ¢ = cg/p in (3.4.2) gives Y /p(c) = Ag(r,77). Since ¢ > a,
(3.4 Theorem (1)), we have Y /p(c) = ay + p(c—ae).

LEMMA 3. If v € Gal(K/F), v # 1, then Ag(7,77) > z,. Equality holds here if and only if

s = ar.
Proof. The relation X, (Ag(7,77)) = p?> 2"sw(# ® 77) reduces us to proving
sw(F @ 717) > P25 (2).

Since z; is the last jump of X, we have X (y) =y, for y > z;. In particular, X-(z;) = z;. The
inductive hypothesis therefore yields

p2T_2ET(ZT) = pr_l(SW(T) —ar).

On the other hand, sw(7 ® 77) = p"tsw(7)—p"la, by Lemma 2(3). By 3.4 Lemma 1, we have
as < ar, whence the result follows. O

LEMMA 4. The element ¢ = cg/p(0) satisties ¢ = 25 = o p(2r)-

Proof. By definition, the number ¢/ p(2,) is the infimum of € > 0 such that 7| Wx NRp(e) is
a multiple of a character. Only numbers € > a, enter and, by 3.3 Lemma 2, Rp(e) C Wy for
such e. That is, ¢ /p(2r) is the infimum of € > 0 such that 7| Rp(e) is a multiple of a character.
Lemma 3 gives

c=pr/r(Ax(T,77)) 2 oK /r(2r) (3.5.1)
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while, on the other hand, ¢ is the infimum of numbers € such that 7 |Rp(€) = 77| Rp(€). Thus
(3.5.1) implies that ¢ is the infimum of numbers € such that o | Rp(€) is a multiple of a character.
That is, ¢ = 2, > Yk /r(2-), as required. |

Lemma 4 yields the first assertion of the theorem. We prove the second. To complete the
induction, we have to show that

¢ = 25 = p7 (W(0) — o).
Abbreviating A = Ag(7,77), (3.5.1) asserts that
Vi /p(c) = ag + plc—as) = A. (3.5.2)
We have X, (y) =y, for y > z,, while Lemma 3 gives A > z;. So,
A = S.(A) = sw(F © 1) /p 2 = pI (sw(r) — ao).

Combining with (3.5.2), we obtain

However, sw(7) = sw(o) — p" ' (p—1)a,, whence
2g=c=p "(sw(o)—as), (3.5.3)
as required. O
Keeping the notation of the theorem, we exhibit a consequence.

COROLLARY 1. Let o € W}Wr be of Carayol type and degree p", r > 1. Set a = a,. If
wq(0)/Fwe(T) = p?, then a is the unique jump of the function X,.

Proof. Lemma 4(2) of 3.4 implies ¢ = a,. We have just shown that ¢ = z,. The function X, thus
has a unique jump. O

Remark. The conclusion of the corollary has strong implications for the structure of the
representation o; see 8.4 Proposition below.

To finish, we note that, because of (2.2.3), the theorem and its corollary apply equally to
totally wild representations that are not absolutely wild. In particular, we have the following
result.

COROLLARY 2. Let o € V\?vgr be of Carayol type and dimension p”. If a, and z, are the first and
last jumps of the function X, respectively, they are related by

sw(o) — ag
o= —
3.6 We start the proof of the functional equation (3.1.1). The argument occupies the rest of the
section.
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In 3.4, 3.5, we effectively worked with decomposition functions. We must now pass to
Herbrand functions. To avoid the need for more notation, we work with endo-classes. Nonetheless,
the underlying technique is entirely Galois-theoretic and could be phrased in those terms. We
start with the necessary translation.

PROPOSITION. Let © € E°(F) be of degree p”, r > 1. If ag < zo are the first and last jumps of
Ugo, then

z0 =so —ao/p" =<0 — Vo(ao). (3.6.1)

Proof. There exists an irreducible cuspidal representation 7 of GLy(F") that contains a simple
character of endo-class ©. The representation ¢ = 7 is therefore totally wild of dimension p".
Moreover, sw(o) = p"s, = p'so is not divisible by p, so o is of Carayol type. The formula in
part (1) of 2.4 Proposition implies that the functions ¥g, Y, have the same jumps. In particular,
ag = as and zg = z,. The first equality in (3.6.1) thus follows from 3.5 Corollary 2. In the range

0 <z < ag, wehave Uy (z) =p " and so ag/p" = Ye(ae), as required for the second equality. O

3.7 Let © € E(F) be totally wild. Say that © is absolutely wild if there exists o € \/A\?%Wr such
that “© = [0]{. The relation [¢]7 = “O determines o up to tensoring with a tame character of
Wpr [BH14b, 1.3 Proposition]. So, if one choice of ¢ is absolutely wild, then all are.

For given ©, there surely exists a finite tame extension T'/F so that the unique T/ F-lift 67
of O is absolutely wild. We have ¢gr = e(T'|F)so. From (2.2.3) we deduce that if (3.1.1) holds
for ©T it also holds for ©. We therefore proceed on the basis that the given endo-class © is
absolutely wild.

For the next result, take © € E°(F) absolutely wild of degree p". Choose o € W}Wr so that
[0]§ = “6. Define a = ar, K/F and 7, relative to o, as in 3.3 Lemma 1. Let ¢ = ¢x/p(0) as in
(3.4.2), and note that a = ag.

PROPOSITION. There exists a unique T € &(K) such that [r]§ = YT If r > 2, the endo-class T
is absolutely wild of degree p"~', while otherwise degY = 1. In either case, it satisfies

Uo(x) =p ' Ur(vg/r(x), 0<z<e

Proof. The existence and uniqueness of 1" are clear. If » > 2, then 7 is absolutely wild, whence
so is 7. In the region 0 < z < a, we have Vg (z) = p~"x while Ur (Vg p(r)) = Ur(x) —p1 "x.
The required relation therefore holds in this range. In the case a = ¢, there is nothing left to do
so we assume a < c.

If a < x < ¢, 3.4 Theorem gives wy(0) = pwy(7). In other words, the ratio of the derivatives
of Vg and Wy o ¢/ p is constant on the interval a <z < ¢. For a < x < a+4, with § small and
positive, this ratio is equal to p: this follows from the relation w,(0)/Fwe(7) = p. Integrating the
derivative relation, the result follows. O

3.8 We prove (3.1.1). Let © € E°(F) be absolutely wild of degree p". We first dispose of a
singular case.

PROPOSITION. Suppose that Wg has a unique jump a. The functional equation (3.1.1) then
holds for © and a = p"so/(1+p").
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Proof. Appealing to 2.4 Proposition part (3), the graph of ¥g, in the range 0 < z < <p,
comprises only segments of the two lines y = p~™"x, y = p"xz—(p"—1)se. The latter has slope
p" and passes through the point (g, cg). These two lines intersect at the point (a,p~"a), where
a=p"sg/(1+p"). Using the symmetry formulation of 3.1, the result is clear in this case. O

We assume henceforth that ¥ has at least two jumps and proceed by induction on r. Suppose
r = 1. In this case, ¥g has exactly two jumps, and they are related as in 3.6 Proposition. The
graph consists of segments of the two lines y = p~'x, y = pz—(p—1)se and a non-empty segment
of a third line of slope 1. Using the symmetry formulation, the result is clear in this case.

Suppose therefore that » > 2 and that Ug has at least two distinct jumps. Let a = ag be
the least jump. There exists a character x of F*, of Swan exponent a and order p, such that
X© = O (as follows from 3.3 Lemma 1). View x as a character of Wr and let W = Ker x. Take
T € €°(K) as in 3.7 Proposition. By the inductive hypothesis,

sr —y=¥Yr(sr —Ur(y)), 0<y<or.

Let z = zg be the largest jump of Yo and zx that of Ur o ¢g p. It follows from 3.5 Lemma 4
that zg < 2. In the range z < x < g, we have

Vo(r) = <o —p"(so—).
Also, so— < s9—z = a/p", by 3.5 Theorem. Therefore
Vo(so — Yo(x)) = Vo (p'(so—7)) = co—,
as desired. If, on the other hand, 0 < z < a, then Vg(x) = x/p", whence
o —VYo(x)=co—z/p" >0 —a/p" = z.

Therefore Vg (co—Vo(z)) = co—=.
It remains to treat the range a < z < z. Here, ¢9—Vg(z) < co—Vg(a) = co—a/p" = z.
We may therefore apply 3.7 Proposition and (3.5.3) to obtain

Vo(so — Vo(z)) = p~ ' Ur(¥x/r(so—To(z))).
We have
Vo(r) < Vo(z) =co —p'(so—2) =so —a.
That is, so—Ve(z) > a. It follows that
Vi/r(so—Vo(r)) =i /r(co) — p¥o(x)
=sr —p¥o(z).
Therefore,
Vo(so — Vo(x)) =p~ ' Ur(er — pPo(z))
=p ' Uy(sr — Ur(vg r(2)))
=p ' (sr — ¥x/r(2)),
applying the inductive hypothesis at the last step. Finally,

pHor —¥k/p() = p (VK p(se) — Yk p() = s0 — z,

and the proof is complete. O
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4. Symmetry and the bi-Herbrand function

We turn attention to the GL side. Let © € €°(F) be of degree p” (in the notation of 2.3). In
particular, » > 1. We observed in 3.1 that the functional equation (3.1.1) can be interpreted as
a symmetry property of the graph of Wg. This leads us to define a family of more transparent
‘bi-Herbrand functions’ with the same properties of symmetry and convexity. Our objective,
realized in § 7, is to calculate ¥g explicitly as a bi-Herbrand function. However, 4.6 Example at
the end of the section does exactly that in a substantial family of cases.

4.1 We draw out some useful features of the graph y = Wg(x). For A > 0, letiy be the reflection
in the line x+y = A. That is,

L (z,y) — A=y, A\—x).

PROPOSITION. Let © € EC(F) be of degree p" and abbreviate ¢ = gg.

(1) The graph y = VYgo(z), 0 < z <, is stable under the reflection i..
(2) There is a unique point cg such that co+%¥Yo(co) = s. The following conditions are
equivalent.

(a) The point cg is not a jump of Vg.

(b) The function Vg has an even number of jumps.

(c) The function ¥y, takes the value 1 on a non-empty open subset of the region 0 < z <.
(d) The set I of x for which WUy (x) =1 is an open interval containing ce.

(3) If conditions (2)(a)—(d) hold, then
Vg(x) =2 —2co0+¢s, zel.

(4) Let 0 < x <. In all cases, Vyg(x) < 1 if 2+Vo(x) <<, while ¥iy(z) > 1 if e+Tg(z) > <.

Proof. Part (1) has been proved in 3.1, as a consequence of (3.1.1). The function Vg is strictly
increasing, giving the first assertion in (2). The equivalence of (a), (b) and (d) follows from the
symmetry of part (1). Suppose (c) holds, and let I be the set of z, 0 < z < ¢, for which Wi (z) = 1.
The convexity of Wg implies that [ is an interval and symmetry implies cg € I. Thus (c¢) implies
(d), and surely (d) implies (c).

In part (3), there is a neighbourhood of cg on which ¥g(z) = z—b, for some constant b. Thus
¢ = cot+Vo(co) = 2co—b, whence b = 2cg—g, as required. Part (4) follows from the convexity
of U and the symmetry property of (1). O

Remark. The function ¥e is continuous and strictly increasing. The condition z+Vg(x) < ¢ of
part (4) is therefore equivalent to = < cg.

We frequently use the following simple observation, so we exhibit it as a corollary.

COROLLARY. The function ¥g has an odd number of jumps if and only if cg is a jump. In that
case, cg is the middle one.

Proof. The reflection i stabilizes the set of jumps of Wg but fixes the point (cg, Yo(co)). O
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4.2 We construct a family of ic-symmetric functions using more transparent data. They have
properties analogous to those in 4.1 Proposition. To specify them, we need two families of
auxiliary functions defined using the classical Herbrand functions ¢ g, p, ¢p/r of §1.

DEFINITION. Let E/F be a totally ramified field extension of degree p", r > 1. Let ¢ = m/p",
where m is a positive integer not divisible by p. Define

\I/X — —r
gﬁwﬁﬂ p mem} } 0<z<c (4.2.1)
\I’(E/Eg)(w) =q— ‘;OE/F(p (§—$)),

. +
The functions \IJ(XE/Fyg)a \P(E/F,g)

linear in the region 0 < < ¢. They have only finitely many jumps there.

are continuous, strictly increasing, convex and piecewise

LEMMA.

(1) The functions ¥}

+ .
(B/Fq) ‘II(E/F,g) satisfy

<=2 =V ippo(s = Vg pg ()
= Y (5re)(s = ¥p/pg @)

(2) There is a unique point ¢ = ¢(g/p) such that c—i—\I/(XE/Fg)(c) = ¢. It further satisfies
+ _
e+ pg(c) =
(3) Let joo = joo( E|F) be the largest jump of ¥ p. If joo < ¢ then jo is the largest jump of

\II(XE/FS) and
Joo =S = V(55 () (4.2.2)
is the least jump of U/, f joo < ¢, then ¢ < Joo < 6.

(E/Fs)

Proof. Part (1) follows from a simple manipulation of the definition (4.2.1). In (2), the function

\I'(XE R 18 strictly increasing and W (XE JF) (0) = 0, giving the first assertion. For the second, we

abbreviate the notation in the obvious way. From (1), s—c = ¥+ (¢—¥*(c)) = ¥T(c), as required.
The graphs y = \I/(XE / FK)(m), Yy = \I/?E IF<) (x) are interchanged by the involutionic, whence (3)
follows. O

We define the bi-Herbrand function Q\II(E/FS) by
2\II(E/F,g)('%) = max {\IJ(XE/F,g)(ZL‘)v \I/?_E/FS)(@‘)}, 0<z<s. (4.2.3)

When speaking of the jumps of Q\If( E/Fc), We mean the discontinuities of its derivative in the
region 0 < = <.

PROPOSITION. Let joo = joo(E|F) and write ¢ = ¢(g/F), as in the lemma.

(1) The function 2\11( E/F,) Is continuous, strictly increasing, piecewise linear and convex, with
only finitely many jumps. The graph y = Q\IJ(E/EQ (x) is symmetric with respect to the line
rT+y =G.

1990

Downloaded from https://www.cambridge.org/core. UVA Universiteitsbibliotheek, on 20 May 2021 at 07:03:04, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/5S0010437X19007449


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X19007449
https://www.cambridge.org/core

CARAYOL REPRESENTATIONS

(2) Suppose joo = c. The function Q\IJ(E/FS) has an odd number of jumps, of which c is the
middle one. The derivative Q\IJ’(E/FC) does not take the value 1. Moreover,

U pe (@) > Uy p (@), 0<z<c,

2
V(g/Frq)(z) =
(E/F3) \I'(JFE/FS)(:U) > \IJ(XE/EQ(JC), c<z<q.

(3) Suppose joo < c. Defining Joo as in (4.2.2), we have joo < ¢ < Joo-
(a) If joo < @ < Joo, then

2
‘I’/(E/F,g)(x) = ‘I’(Xé/pﬁ)(fﬂ) = ‘I/zrémg)(x) =1,
"W (/r0) (@) = Vg pg (@) = Vg pg (@) = 2= wpyp

(b) If 0 < & < joo, then \IIEZQ/F’() () =1> \II(X};/FS) (x) and

V(g pe(T) = Vg e (@) > \I’ELE/F&)(Q;)'

(¢) If Joo < x <, then ¥/

(E/FS)(x) =1< 0

(E/Fq) (x) and

2 _ ot
\I/(E/F,q)(x) = \I/(E/F,g)(x) > \I’(XE/F,.;)(x)-
In particular, 2\II(E/F,§) has an even number of jumps.

Proof. In (1), only convexity requires comment, and that is obvious from parts (2) and (3).

The index (F/F, <) will be constant throughout, so we omit it for the rest of this argument.
We have ¥*(c) = ¥t (c) = 2¥(c). We examine the functions in a small neighbourhood of z = c.
The values of ¥*/(z) are of the form p~*, and those of U/ (z) are p*, for various integers s
such that 0 < s < 7. In part (2), the left derivative of ¥ at c is, at most, p~!, while the right
derivative of U at c is at least p. So, c is a jump of 2¥. The other assertions in (2) follow from
the convexity of the functions ¥* and ¥,

In part (3), the functions U*, T agree, and have derivative 1, on the interval joo < = < Joo
(which contains c¢). The derivative relations are clear from the definitions, and readily imply the
main points. O

Remark. By 1.6 Proposition, the condition j, = ¢ amounts to
joo““IJ(XE/F,g) (Joo) = 200 — p_er/F 2.

By 1.6 Corollary, this will hold if wg/p = m(p"—1)/(p"+1).

4.3 We restate 2.6 Proposition in terms of the bi-Herbrand function.

PROPOSITION. Let © € E°(F) be of degree p". Let 0 € C(a, ) be a realization of © on a simple
stratum [a,m, 0, a] in M,r(F). If ¢ = g9 = m/p” and E = F|a] then

Vo(z) = Q\II(E/Fvg)(l') = \P?E/F’C)(IL‘), 0<x<g/2,
Vo(r) = 2\IJ(E/F,c)(z’ﬂ) = \II?—E/FS)(%)’ §/2 < \II?—E/F’Q‘)('Z.) <<

Proof. The first assertion combines 2.6 Proposition with 4.2 Proposition. The second follows
from the symmetry properties of ¥g and Z\II(E/FS). O
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4.4 We record the effect of tame lifting on these functions.

PROPOSITION. Let E/F be totally ramified of degree p" and let ¢ = m/p", for a positive integer
m not divisible by p. If K/F is a finite tame extension and e = e(K|F’), then

‘II(XE/F,g) (z) = \II(XEK/K,eg)(ex>/e’
\PTE/F7<) (x) = \II?FEK/Kﬁg)(e:c)/e, 0<z<s.
U p/ro () = 2V pr/K e (ex) /€,
Proof. This combines the definitions (4.2.1), (4.2.3) with 1.1 Lemma. 0

4.5 The second assertion of 4.3 Proposition determines ¥g where Wg(z) > ¢/2. That has already
been done in 2.7 Proposition, but in a rather different way. Reconciliation of the two approaches

reveals a fundamental property of \I/EFE JF)" See 2.5 Definition for the notion of ‘twisting datum’.

PROPOSITION. Let [a,m,0,a] be a simple stratum in M, (F), in which E = F[a]/F is totally
ramified of degree p" and m is not divisible by p. Set ¢ = m/p". If (k,c,x) is a twisting datum

over F' such that k < m/p" is not a jump of \I'(JFE/FS) then
+ _ r
\I’(E/F,g)(k) = t/P s

where t is the least integer for which the congruence
utou = atc (mod ph) (4.5.1)
admits a solution u € U_.

Proof. Assume initially that 2¢ > m. For comparison purposes, choose 6 € C(a, ) and let © be
the endo-class of 8. Thus @ is totally wild and of Carayol type. By 4.3 Proposition, &k is not

a jump of ¥g and so, by 2.7 Proposition, t/p" = Vg(k) = \IJ?FE/FC)(k). Because of the jump
k

condition, ¢ depends on &k but not on the element ¢ € p" \ p};‘_k .

We now admit the possibility 2¢ < m. The integer ¢t depends on a and ¢, so we define
a function T'(a,c) = p~"t where, as before, ¢ is the least integer for which (4.5.1) admits a
solution. Let n be a positive integer and take v € F' with vp(v) = —n. Thus [a, m+p"n,0, va] is
a simple stratum in M, (F'). The congruences

ulau = atc (mod pt),
u'vou = v(a+e)  (mod p~HHP™)
have the same sets of solutions u € Uul. Consequently,
T(va,ve) =T (a,c) + n.

Provided 2T (va, ve) > ¢+n, we therefore have

T(va,ve) = W{E/F7§+n)(k+n).
The definition of the functions \II?_E IF) implies
+ _ gt
Vipperm(@tn) =¥ p o (x) +n,
so k+n is not a jump of \IIZLE/Fng) (x+mn). The condition 27 (va,vc) > ¢+n thus reduces to
2T (a,¢) > ¢ — n. So, for integers k = —vp(c) satistying 27 (va,ve) > k > ¢+n, we have
\IJ?_E/F,Q)(I{:) = T(«,c). Allowing n to increase without bound, we see that \IJZFE/FS)(I@) =T(x,c),
for all integers k that are not jumps of ‘IJZFE /P O
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+
(E/F)

was observed in more general work of Zink [Zin88, Zin92] on a corresponding problem in F-
division algebras.

Remark. The relation between the function ¥ and intertwining properties of simple strata

4.6 To finish the section with an example, we calculate Vg in a large family of cases.

EXAMPLE. Let © € EC(F) be of degree p", 7 > 1. Let 6 € C(a, ) be a realization of © on a
simple stratum [a,m,0,a] in My (F'). Write ¢ = o = m/p" and E = Fla]. If joo(E|F) < /2,
then

Vo(z) =V (g/pe(x), 0

Proof. By 4.3 Proposition, g (z) = 2 p/p ) () for 0 < z < /2. Likewise for c—¥p(c/2) <z <<
by symmetry. In particular, Uy (x) = 2\11’(E/F<)(x) =1 for joo < < /2. Thus 4.1 Proposition (2)

N

r <G,

applies. It shows that ¥y (z) = 1 on the set jo < = < ¢—¥g(jx). The same argument,
using 4.2 Proposition, applies to Q\II(E/FS), whence Vg () = Z\P(E/Fvg)(x) on this range. Overall,
Uo(z) = 2\IJ(E/F7§)(1‘) for0 <z <. O

Gross. The hypothesis jo, < /2 holds if wg/p < (p—1)m/2p.

Proof. By 1.6 Corollary, jo < pl_TwE/F/(p—l). O

5. Characters of restricted level
Let [a,m,0, o] be a simple stratum in M = M,y (F), r > 1, satisfying the usual conditions:

(1) E = Fla]/F is totally ramified of degree p";
(2) m is not divisible by p and ¢ = m/p".

Let ||C(a, )| be the set of endo-classes of simple characters § € C(a,«). Thus any © €
|€(a,a)| lies in E°(F) and has degree p". In this section we fix o and identify a set of
© € ||C(a,a)]| for which Wg = *W¥ (p(a]/F.)- This will be the set called £, in the introduction.
In substance, the section is a sequence of increasingly delicate conjugacy calculations. These
are progressively interpreted in terms of intertwining properties of simple characters, using the
elementary properties of the graphs of the various functions ‘¥’ laid out in § 4.

5.1 We recall, in the special case to hand, some of the machinery of [BK93, ch. 1]. Let p be the
Jacobson radical of a. Define

Ay : M — M,
1

T —> ara T —I.

Let sp/p : M — E be a tame corestriction on M, relative to E//F. By definition, sg/p is an
(E, E)-bimodule homomorphism M — FE such that sp,p(a) = op. For integers i < j, we have
exact sequences

0— P% — p' *—>Aa p ——>SE/F P% — 0,

/

i jnd g Aa i SE/F g (5.1.1)

As in 2.1, let up be a character of F' of level one and set up = pp o tras. Let wg/p denote
the wild exponent of the field extension E/F (1.6.1).
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LEMMA.
(1) There is a unique character ug of E, of level one, such that
prv () = pe(spr(z)), =€ M. (5.1.2)

(2) There is a unique d € E, of valuation wg,p, such that sg/p(y) = yd, y € E.

Proof. Part (1) is [BK93, (1.3.7)]. Part (2) follows from [BK93, (1.3.8)]. O
5.2 We introduce a new parameter.

DEFINITION. Let 6 € C(a,«). Define Ig(0) as the least integer | > 0 for which the character
6 | UEH is trivial.

PROPOSITION. Abbreviate w = wg/p and let 6 € C(a, o).

(1) If m > 2w, then lg(0) = m—w.
(2) If m < 2w, then 0 < lg(0) < m/2. If | is an integer, 0 < | < m/2, there exists ¥ € C(a, a)
such that lg(9) = [.

Proof. Let y € E, vg(y) = [m/2]+1. The description (2.3.1) of 6 gives

0(1+y) = Yu * a(l+y) = pp(asg/r(y)),

for a tame corestriction sp,p and a character ug of E, as in 5.1 Lemma. Also, ve(sg/r(y)) =

[m/2]

vE(y)4w. Consequently, if 2w < m, the character 6 is non-trivial on U;r and [p(0) = m—w.

Otherwise, 6 is trivial on U éﬂm/ 2 and assertion (2) follows from the description in 2.3. o

Warning. The variation of [g(0) with E is unstable and quite subtle. We explore and exploit
this in §6.

5.3 We use the notation j, Joo of (4.2.2). We spend the rest of this section proving the following.

THEOREM. Let [a,m,0,a] be a simple stratum in M = M,-(F'), r > 1, in which E = F[a|/F
is totally ramified of degree p" and p does not divide m. Set ¢ = m/p" and let w = wg/r- Let
0 € C(a, «) have endo-class © and suppose that

lg(0) < max {0, m—w}. (5.3.1)

N

IfQ\IJ(E/F’g) (z) has an odd number of jumps, then Vg(z) = Q‘II(E/FS) (), 0< x
If m > 2w, then lp(0) = m—w and Yo(x) =¥ (g/p(z), 0 <z <.

If w is divisible by p, then Vg () =2V g p o (x), 0 < z < <.

Suppose that m > w > m/2, that w is not divisible by p, and that 2\II(E/F,§) has an even

S.

~ o~~~
)

=~
S— N N N

number of jumps. There is a unique character ¢ of Up~", trivial on Uz ™ ", with the
following property.

(a) The relation Vg(x) =W (g, p)(x) holds for allz, 0 < x <, if and only if | U™ # ¢.
(b) If 0| U™ = ¢, then

Vo(z) =¥ (g/pg(r), 0< T < oo, Joo <7 <5,

\I/@(ZL‘) < 2\I](E/F,g)(w)7 Joo < T < Joo-
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Remarks.

(1) The hypothesis of part (1) holds if and only if 2\11’(E/F’§) (x) # 1 for 0 < 2z < ¢
(4.2 Proposition). It is valid if w > m(p"—1)/(p"+1) (4.2 Remark). In particular, if w > m
then part (1) applies.

(2) In part (2), hypothesis (5.3.1) holds for all § € C(a, ) (5.2 Proposition). This case therefore
subsumes 4.6 Example (but we will use this example in the proof of the theorem).

(3) Regarding (3), the case w =0 (mod p) can only occur when F' has characteristic 0 (1.8).

(4) A form of the character ¢ in part (4) is written down in (5.12.3) below. A different version
is given in 7.3 Remark below, showing that it may or may not be trivial.

In the theorem, the division into cases (1)—(4) is not exclusive. Certainly (3) can overlap
either (1) or (2). When p = 2, (1) and (2) can overlap (6.2 Example below). Case (4) overlaps
no other.

After preparatory work, part (1) of the theorem is proved in 5.6. Following more preparation
in 5.8 and 5.9, parts (2), (3) and (4) are proved in 5.10, 5.11 and 5.12, respectively.

5.4 Let p be the Jacobson radical of a. Let ¢ € F, with vp(c) = —k and k < ¢ = m/p". Let
t < p"k be an integer. As a first step, we consider formal intertwining between the simple strata
[a,m,t,a] and [a, m,t, a+c]. That is, we analyse the congruence

utou=a+e (modp~t), weUL (5.4.1)
LEMMA. The set of solutions u € Ul of (5.4.1) is either empty or constitutes one coset
wULU™t € ULUT % juLum—t,

Proof. Let u € U} satisfy (5.4.1). Thus u conjugates the equivalence class of the simple stratum
[a,m,t,a] to that of [a,m,t,a+c]. If v € Ul and uv satisfies (5.4.1), then v conjugates the
equivalence class of the stratum [a, m, ¢, a-+c] to itself. Equivalently, v € ULU™~* [BK93, (1.5.8)],
so the coset uULUM™ ! is uniquely determined by (5.4.1). On the other hand, u conjugates the

equivalence class of [a,m,p"k, a] to itself, so u € U%U,;nfprk [BK93, (1.5.8)]. O
Remark. Since UL commutes with a, we need only ever consider solutions u of (5.4.1) that satisfy
we Umnrk

5.5 We continue with the same notation. In (5.4.1), write v = 14a, a € p™ P"F_ In this form,
(5.4.1) amounts to
(14+a)ta(1+a) = atc  (mod p~) (5.5.1)

or, equivalently,
aa—aa = c¢(14+a)  (mod p~h). (5.5.2)

We use the standard notation [z,y] = zy—yx, for z,y € M.
PROPOSITION. Let a € p™ P'F satisfy (5.5.1). Ify € E, vg(y) =b > 1, then
(1+a)(1+y)(1+a) ™' =1+y  (mod p"*™7"),

for an element § € E such that §j =y (mod prerprk)_
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Proof. We rearrange the conjugation as

(1+a)(1+y)(14a) "t =1+ y + [a,y](1+a) L.

Applying the defining relations (5.5.1), (5.5.2), we get

)

= afa,y)(1+a)"! — [a,y](1+a) 'a

= ala,y](14+a)~! — [a,y](a+c)(1+a)™t  (mod pttm—r k=t)

= ([, aly — ylo, a] — [a, yle)(1+a) 7! (mod pbtm—pk-t)

= (¢(14a)y — ye(14a) — [a, y]e)(1+a)~  (mod p®—t)

=0 (mod p®~t).
The exact sequences (5.1.1) imply [a,y](1+a)~! = v+h, for v € p?m_prk and h € p+mt as
required. -

5.6 We continue with the same notation, especially ¢ = m/p" and w = wg/p.

PROPOSITION 1. Let I be an open sub-interval of (0,<) on which \I/(XE/F’C) and \I/?E/FS) are both
smooth and satisfy
+
\II(XE/FS)(x) > \I/(E/F,g)(x), xel. (5.6.1)
Let 6 € C(a, «v), and suppose
I =1g(0) < max{0,m—w}. (5.6.2)

If 0 has endo-class ©, then
Vo(z) = \I/(XE/F,.;)(QU) = 2\II(JE/F,q)(37)7 z €l

Proof. By (4.2.1), (4.2.3), we have ‘II(Xé/FS) () <1< \I'(Jré/FS) (x), 0 < x <. By 4.2 Proposition,

hypothesis (5.6.1) implies that \IJ(XE’/Fjg)(x) < 1, x € I. The convexity of Yg/p = p”\I/(XE/ch)
and 1.6 Proposition now imply \I/(XE/FS) () >x—p"w, x € 1.

As in the proof of 2.6 Proposition, the tame lifting properties of 4.4 Proposition and 2.5
Proposition 2 show it is enough to prove the result when x is an integer. So, let k be an integer,
k € I, that is not a jump of Wg. Let (k, ¢, x) be a twisting datum (2.5). We apply 5.5 Proposition

with ¢t = pT\IJZFE/F <)(k). By 4.5 Proposition, ¢ is the least integer for which the congruence (5.5.1)

admits a solution a. By 5.4 Lemma, we may take a € p™ P"¥. The definition of I implies that k
is not a jump of Y/ p, s0 Y /p(k) =sw(x o Ng/p) is an integer (1.3 Proposition).

Write v = ¢g/p(k) and let y € E have valuation 14+v. In particular, x o det(1+y) = 1
(cf. 1.3 Proposition). Our hypothesis (5.6.1) amounts to

wE/F(k) = pT\IJZ(E/F7§)(k) > pr\IJZrE/Fvg)(k) =t,
so v > t. Thus 5.5 Proposition gives

(1+a)(1+y)(14a) " =14y (mod p*™),
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whence 1+a normalizes the group H'™V(a,a) and 0'*%(14+y) = 6(1+y). Taking first the case
1 =0, we get 01F%(1+y) = 0(14+7) = 1 = xO(1+y). In the other case 0 < | < m—w,

vE(Y—y) = 1+vtm—p'k =1+ ¢gp(k) +m—p'k > 1+m —w,

since Y/ p(k) > p"k—w. It follows that 0'T¢(1+y) = 0(147) = 0(14y) = x0(14y). By hypothesis
(5.6.1), t < v so the definition of a ensures that 14+a conjugates 6 to xf on H'*Y(a, a). Therefore
Vo(k) < v/p" =2V (gpg) (k).

We go through the same process with vg(y) = v = Yg/p(k). We choose y so that x o
det(1+y) = x o Ng/p(1+y) # 1. If m > w, then

vE(J—y) = vim—p'k >m-w >,

whence 017%(14+y) = 0(1+y) # x0(1+y). The element 1+a therefore normalizes H?(«, a) but
does not conjugate € to x6 on that group. If m < w then [ = 0 and the same conclusion holds.

Suppose there exists 1+b € U} that intertwines 6 with x6 on H?(«, a): that is, it conjugates
6 to x0 on that group. It therefore conjugates 6 to x0 on H'™¥(a,a) and so is of the form
1+b = u(1+a), where u € U} conjugates | H!™"(«, a) to itself.

LEMMA. We have v < [m/2].

Proof. Hypothesis (5.6.1) implies that k is strictly less that the largest jump of ¢ g /. Therefore
v =g r(k) < p"'k. On the other hand, k < ¢ = m/p". Suppose that v > [m/2]. Since v is an
integer, this implies v > m/2 and so

m/2 <v<p Tk <m/p,
which is ridiculous. O

Following the lemma, the element u conjugates 6 to itself on H!(c, a), as follows from [BK93,
(3.3.2)]. Therefore,
91+a ‘ HU(a7 Cl) _ 91+b ’ HU(O[7 Cl) _ X9 ’ HU(OJ, Cl),

which is false. We conclude that 6 does not intertwine with x0 on H"(a,a), and so Wg(k) =
A(O,xO) =v/p" =2V g/p (k), as required. O

Proposition 1 has a ‘mirror image’ as follows.

PROPOSITION 2. Let I be an open sub-interval of (0,<) on which ¥

(E/F)’ \IJz“E/FS) are smooth

and satisfy

U pe(@) < Ulgpy(@), zel (5.6.3)
Let 6 € C(a,a), and suppose
[ =1g(0) < max{0, m—w}. (5.6.4)

If 0 has endo-class ©, then
Vo (x) = Vi p(®) =Y (g/pg(x), €l

Proof. The symmetry property of Wg (3.1.1) and the corresponding properties (4.2 Lemma)
connecting U with ¥ together show that this proposition is equivalent to Proposition 1. O
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Proof of 5.8 Theorem (1). Here, 2‘11(E/F7<) has an odd number of jumps. The interval 0 < z < ¢,
with the jumps of Q\I'( E/F,) removed, is covered by a finite union of open intervals I; on which
either (5.6.1) or (5.6.3) holds. The propositions imply that Vg () =2V g, p)(z) for = € U; 1;-
By continuity, the functions are equal for 0 < z <. O

The argument used to prove part (1) of 5.3 Theorem has broader applicability. As before, ©
is the endo-class of a simple character 6 € C(a, ) satisfying (5.3.1).

COROLLARY 1. If2\Il(E/F7§) has an even number of jumps, then

Vo(z) =2V (g/ro ()
for all x such that 0 < & < Joo OF Joo < T < .

X

Proof. In the region 0 < z < jo, we have \I/(E/Fg)(ac) > \IIZFE/Fg)(x) by 4.2 Proposition.
Proposition 1 then implies ¥g(z) = \II(XE/FC) (2) = 2 (g/pq) (2) for 0 < 2 < joo. Proposition 2

implies Yg(z) = \II?FE/FS) (z) =2V g/ po(x) for Joo <z <. O
We can push this train of thought a little further.
COROLLARY 2. If2\I/(E/F’§) has an even number of jumps, then

\II@(.%') < 2\I/(E/F,§)<a'j)7 Joo < < Joo-
The following conditions are equivalent.

(1) \I]@(SU()) = 2\I’(E/F,g)(1'0); for some xqy such that jo < g < Joo-
(2) Yo(z) =¥ (g/pq(x) for all z such that joo < T < Joo.

Proof. For jo < x < Joo, We have 2\II(E/F7§) () = z—p~"w. The functions Yo, Q\I'(E/Fyg) agree at
the end-points jso, Joo- As WUg is convex in this region, (1) implies (2). The converse is trivial. O

Corollary 2 provides the basis of a strategy for proving the remaining assertions
of 5.3 Theorem.

5.7 Before we can develop this strategy, we need a minor result derived from elementary linear
algebra.

Let k be a field and V' a k-vector space of finite dimension n. Let n be a regular nilpotent
endomorphism of V. The n-stable subspaces of V' are then V; = n/(V),0<j <n.

LEMMA 1. Let v be a nilpotent endomorphism of V' that commutes with n. There exists a =
a(V,n,n') € k such that
n'(v) =an(v) (mod Vji2), veEV,

for 0 < j < n—2. The element a is non-zero if and only if v’ is regular.
Proof. Let m € Endg (V') commute with n. There is a unique polynomial ¢(X) € k[X], of degree

at most n—1, such that m = ¢(n). The endomorphism m is nilpotent if and only if ¢(0) = 0. If this
holds, the linear coefficient a = ¢'(0) satisfies m(v) = an(v) (mod Vj;2), v € Vj}, as required. O
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We apply Lemma 1 in the following context. Let [a,m,0,a] be a simple stratum in M =
My (F), E = F[a], as in the theorem. Let kp = op/pr be the residue field of F. If p is the
Jacobson radical of a, the kp-algebra a/p is isomorphic to ké’; and « acts on it by conjugation.

LEMMA 2. The endomorphism of a/p, induced by A,, is regular nilpotent.

Proof. As an endomorphism of the kp-space a/p, A, = Ada — 1 satisfies (4,)P = Agp, and so
(Aa)P" = A_,r. However, o? € F*U,, whence Ad a?" induces the identity map on a/p. That is,
(A)P" =0 and so A, is nilpotent. By (5.1.1), Ker A, is the one-dimensional subspace og/pg of
a/p, so A, is regular. O

PROPOSITION. Let V; = Al (a/p). Let s be an integer and write ( = s/m € op. If 8 € E has
valuation vg () = —s, then
A5(0) = CAa(v)  (mod Viya),

forveV;, 0<j<p—2.
Proof. The set of indecomposable idempotents of the kp-algebra a/p provides a kp-basis that
is permuted cyclically by Ad «, with period p". We have A, = Ad o — 1. Similarly for Ag, and

Ap+1 = (Aq+1), for an integer ¢, 0 < ¢ < p*—1, such that s = mt (mod p®). The linear term
in (Aa+1)! is tA,, whence the result follows. O

5.8 We return to the proof of 5.3 Theorem, as it was left at the end of 5.6. We may now assume
that 2\11( E/F,) has an even number of jumps. Let I be the non-empty open interval joo <z < Jso.
So, for x € I,

2\IJ(E/F,c) (z) = \I’(XE/F,C) (z) = \I’(+E/F7C) () = 2—p "w,

where w = wg/p. Let (k,c, x) be a twisting datum with & € I; in particular, w < p"k. Our aim,
in this subsection and the next, is to refine 5.5 Proposition in this more restricted context.
By 4.5 Proposition, the congruence

(14+a)ta(1+a) = atc  (mod p~) (5.8.1)

admits a solution a if and only if ¢t > p’"\I/er I g)(k) = p"k—w. We examine these solutions a more

closely when t = p"k—w. As in 5.4 Remark, we need only consider elements a € p™?"F,
Rewrite (5.8.1) in the form

An(a) = (1+a)ca™  (mod pm P ktwy, (5.8.2)

and set
€ = Ay(a) — (14a)ca™t € pm P htw, (5.8.3)

By 4.5 Proposition, the congruence
An(d') = (14d)ca™  (mod pttm—Phtw) (5.8.4)
has no solution a’.

LEMMA. The element € of (5.8.3) satisfies vg(sg/p(€)) = m — p"k +w and so ve(sg/r(a)) = w.
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Proof. Write t = p"k—w. Suppose, for a contradiction, that ve(sg/p(€)) > m—t. Take a € pmPk
satisfying (5.8.2): the element a is then determined modulo p’, " Rt (5.4 Lemma). Let

y € p™ ¢ and consider the congruence

Aq(aty) = (14a+y)ca™  (mod p!tm ).

1

Since m > p"k, we can neglect the term yca™", so this congruence amounts to

Aalaty) = (1+a)ca™  (mod pl+m~"),
that is,
As(y) = —e  (mod p1+m_t).

We have assumed that vg(sg/p(€)) > m—t so, by (5.1.1), this last congruence admits a solution
y € p™~t. The element a’ = a+y then satisfies (5.8.4), which is impossible. This proves the first
assertion. Now apply sg/p to the definition (5.8.3). Since sp,/p(1) has valuation w, the second
assertion follows directly. O

5.9 We continue in the situation of 5.8. In particular, (k,c,y) is a twisting datum such that
Joo < k < Joo; and p"k > w, by 4.2 Proposition (3)(a). Going forward, we impose the following
simplification.

AssUMPTION. We henceforward assume that 2\II(E/F7<) (7o) < /2.

Justification. If Q\II(E/FS) (Joo) > </2, the functional equation implies joo < ¢/2 and we are in the
situation of 4.6 Example. In that case, we know that Ug(z) = 2\II(E/FS) (x) for 0 < x < g, as
demanded by part (2) of the theorem. O

PROPOSITION 1. Let 6 € C(a, ) satisfy lp(f) < m—w. Let a € p™PF be a solution of (5.8.2).
Define € by (5.8.3) and set ( = w/m € op. If y € E and vg(y) > p"k—w, then

01 (14y) /0(1+y) = 0(1—Cea™y) par(—adey). (5.9.1)

Proof. Suppose first that vg(y) > p"k—w. This implies 6(1—Cea~'y) = 1, while pp(—aley) =1
by 5.8 Lemma. The right-hand side of (5.9.1) thus equals 1. Application of 5.5 Proposition gives
the same for the left-hand side. Assume now that vg(y) = p"k—w.

LEMMA 1. Ify € E and vg(y) = p"k—w, then
(I+a)(1+y)(1+a) ™" = 1+7 + h,
for elements i of E and h of p" such that

=y (modpz™"),

y
h=—Cey (mod Aq(p™) +p™ ).

Proof. We rewrite the defining relation (5.8.1), with t = p"k—w, as
(1+a)ta(1+a) = atctd. (5.9.2)
Thus 6 € p*P'* and

[, a] = (1+a)(c+9),
Aq(a) = (14a)(c+)at.
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Therefore € = (1+a)da~!. We start from the identity

(I+a)(1+y)(1+a) ™" =1 +y + [a,y)(1+a) (5.9.3)
and evaluate, using (5.9.2). We find

[, [a,9](14+a) '] = ala,y 1 la,y)(1+a)

a,y](1+a)"" = [a, y](a+c+d)(1+a)~?

= ([a, aly — yla, a] = [a,y)(c+8))(1+a) "

c+0)y — y(14a)(c+0) — [a, y](c+6)) (1+a)

(14a)
(14a)dy — y(1+a)d — [a, y]6)(14+a)
14a)[6

-
-

—~

Substituting for J, we get
(1+a)[8, y](1+a)™

(14a) [(1+a)_16a,y] (1—1—@)_1
(14a)((14a) teay — y(14+a) Lea)(14a) ™
e, y]  (mod p),

since [ea, y] € a and a € p. Thus

Aa((I+a)(14+y)(1+a) ™) = Aa((a,y)(1+a) )
= [ea,yla™t = [e,y] (mod p™ ).

We have [a,y](14+a)~! € p™~% and [e,y] € p™. It follows that
(I+a)(1+y)(1+a) " =1+ 5+ h,
where j € pgkfw satisfies § =y (mod ply~") and h € p™ satisfies
Aa(h) =e;y]  (mod p'*™).
By 5.7 Proposition,
le,y] = —Ay()y = —(Aa(e)y  (mod AZ(p™) +p™ ).
Adjusting y by an element of p%}, which changes nothing, we may choose h to satisfy
= —Cey (mod Aa(p™) +p"),
as required. O
The elementary identity (5.9.3) implies
(1+a)(1+y)(14+a) ' =1+ y +[a,y] (mod p'T™ ). (5.9.4)
LEMMA 2. Let vp(y) = p"k—w. If { = w/m € of, then [a,y] = —(Aq(a)y (mod ptTm—v).

Proof. The defining relation A,(a) = (1+a)eca™! (mod p™~P"*+%) implies that A2(a) €
pltm=P"k That is,

Aa(a) c pg_ple+p1+m_prk — Agr—l<pm—prk)+pl+m_prk.
Therefore a € A% 2 (p™"%)+p!*™~#"k We apply 5.7 Proposition to get
[a,9] = —Ay(a)y = —CAa(a)y (mod A (p™~%) 4 pltm—v),

Since A% (p™~®) C p!T™ % we have the result. O
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Lemmas 1 and 2 imply [a,y] = —CAs(a)y = —Cca™ly (mod p'*+™~%), and the proposition
follows from (5.9.4). O

Remark. Consider the right-hand side of equation (5.9.1). The dependence on a enters only via

the element ¢, and the expression depends only on sg/p(e) modulo p};m_p "k The element

a € p™P"F is only determined, as a solution of (5.8.2), modulo pg_prk—i—pm*prk*w (5.4 Lemma).

The definition (5.8.3) of € implies that sp,p(€) + p}9+m7prk+w, does not depend on the choice of

the solution a. It follows that (5.9.1) holds equally for all solutions a of (5.8.2).

COROLLARY. In the notation of Proposition 1, the following conditions are equivalent.

(1) Yo(k) < k—p~"w =¥ (g pq (k).

(2) 0(1—Cea™ly) par(—aley) = par(cy), for all y € phy .
Proof. If y € pgrp Tk*w, the proposition gives

01 (14y) /6(1+y) = 1 = par(cy).

Our Assumption implies 8'1%(142) = xf(1+z), for 2 € p'+"/2 Therefore 1+a conjugates 0
to xf on H'*P"*~v(q, q). For the same reason, if (2) holds, then 1+a conjugates 6 to x# on
HP"*=% (o, a), which implies (1).

Conversely, suppose that (1) holds; there exists 1+b € U} that conjugates 6 to xf on
HP'*=%(q, a). Thus (14+b) = u(1+a), for some u € U} that conjugates | H'*P"*=%(qa, a) to
itself. By the Assumption again, any such u conjugates 6 to itself, whence §1+| HP"*=%(q, a)
= x0| H?"*="(a, a) and this implies (2). O

We shall apply Proposition 1 in combination with the following result.

PROPOSITION 2. Let k € I be an integer and suppose that Vg is smooth at k. The following
conditions are equivalent.

(1) There is a twisting datum (k, ¢, x) relative to which
07 (14y) /0(1+y) = par(cy),
for all y € E such that vg(y) > p"k—w and all a. € p™P"* such that
(1+ac) ta(l4a.) = a+ec  (mod p¥~P'k),
(2) Yo(k) <Y (g/pe(k).
(3) Wo(z) <?¥(g/pe(z) for all 2, joo < T < Joo.
(4) For any twisting datum (h,d, ¢), where h € I is an integer at which ¥ is smooth, we have
017 (14y) /0(1+y) = par(dy),
for all y € E such that vg(y) = p"h—w and all ag € p™ P such that
(1+aq) ta(l4aq) = a+d (mod p»~PM).
Proof. The equivalence of (1) and (2) is the preceding corollary. The equivalence of (2) and (3)
is 5.6 Corollary 2.
Certainly (4) implies (1), so suppose that (4) fails: there is a twisting datum (h,d, ¢) such

that 0179 (14-y) /0(14y) # ur(dy), for some y € pghiu’. Thus A(¢O,0) = Vg(h) =h—p "w =
2W (/e (h). Corollary 2 of 5.6 now implies that (3) fails. O
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5.10 We start the proofs of the parts of 5.3 Theorem that allow Q\IJ(E/F’Q) to have an even
number of jumps, the case of an odd number of jumps having been dispatched in 5.6. In this
subsection, we prove part (2) of the theorem.

PROPOSITION. Suppose m > 2wg,/p. If € €(a, a) has endo-class ©, then Vg(x) = Q\IJ(E/FS) (x),
0< 7 <o

Proof. If 2\11( E/F,) has an odd number of jumps, the result follows from part (1) of the theorem,
proved in 5.6. We therefore assume that 2\1’( E/F.) has an even number of jumps and continue
with the notation of 5.8, 5.9. As argued at the beginning of 5.9, we may assume that Vg (jx) =

2‘IJ(E/F,c) (joo) < §/2'

The line segment y = x—w/p" = Q\II(E/FS) (z), © € I, crosses the axis of symmetry x4y = ¢
where p"z = (m+w)/2. So, we choose an integer k, at which Ug is smooth, to satisfy joo < k <
(m+w)/2p". That is,

m—p'k > (m—w)/2 > w/2. (5.10.1)
Let (k, ¢, x) be a twisting datum over F'. Define a. as in 5.9 Proposition 2. We apply the definition
(5.8.3), with vg(y) > p"k—w, to get

0(1—Cea™ty) par(—acey) = 6(1—Cea™ty) par(aCea™ y) par(alacca™y)
— pine(—a¢eay) par(aceay) pr(aCascaly)
= pinr(accCy).

So, by 5.9 Proposition 1,
0' 1% (1+y) /0(1+y) = par(accCy).
We show that the character

14y — pn((1—Cao)ey), yeph™, (5.10.2)

is not trivial, for some choice of ¢ € p;k / pll{k ~ {0}. The proposition will then follow from 5.9
Proposition 2.

The defining relation Aq(ac) = (1+ac)ca™! (mod p™~#"*%) (5.8.2) implies vg(sg)r(ac)) > w.
Ifvp(sp/r(ac)) > w, (5.10.2) reduces to 1+y = pr(cy), which is surely not trivial. We therefore

assume that sg,/p(ac) has valuation w for all ¢ € p}k / p};k, ¢ # 0. We show that this hypothesis
is untenable.
We put ag =0 and let ¢, € p;k / p};k. Conjugating the defining relation

(1+ac) ta(l4+a.) = a+ec  (mod p»~P'F)
by (14a. ), condition (5.10.1) yields

ac + ag  (mod perl)a
SE/F(CLC + CLC/) (mod p

Qcycf

w ¢, = —k l—k‘
SE/F(ac+C’) E+1)7} br/pr

Thus ¢+ sg/p(ac) is a homomorphism p}k/p};k — p}g/p};w. By 5.8 Lemma, sg/p(1+ac) ¢

p};w. That is, the non-zero element —sg/p(1) of p%/pgw is not of the form sg/p(ac). So the
homomorphism p;k /p};k — pY /p}E+w, c — sp/r(ac), cannot be surjective. It therefore has a
non-trivial kernel, contradicting our hypothesis, and the proposition follows. O
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5.11 We prove part (3) of 5.3 Theorem.

PROPOSITION. Suppose that m/2 < w < m and that w = 0 (mod p). Let § € C(a,«) satisfy
15(0) < m—w. If © is the endo-class of §, then Vo (z) = > (g/p (), 0 <z <.

Proof. We may again assume that 2\11( E/F,) has an even number of jumps and proceed as before.
In formula (5.9.1),

0 (1+y)/0(1+y) = 0(1—Cea™"y) pyr (—aley),
we have ( =0 (mod pr), so it reduces to

0" (14y) /0(1+y) =1 # x o N p(1+y) = p(cy),

for some choice of y € p%r F=% The result now follows from 5.9 Proposition 2. O

5.12 We prove part (4) of 5.3 Theorem. Thus Q\II(E/RQ has an even number of jumps, and we
may continue with the notation of 5.8, 5.9. In particular, I is the interval jo, < r < j. Here,
the element ¢ of 5.9 Proposition 1 is a unit in F'. We have to prove the following proposition.

PROPOSITION. Suppose that m > w > m/2 and that w # 0 (mod p). Assume that Q\IJ(E/FS) has
an even number of jumps. There is a unique character ¢ of Ugb_w/U;rm_w with the following
property: a character 6 € C(a, o), with [g(0) < m—w and endo-class O, satisfies Vg = 2‘I/(E/F,<)
if and only if 0 |Ug ™" # ¢.

IfO|UR™" = ¢, then Vg (z) < *¥(g/po(x) for all z € I.

Proof. We again write out formula (5.9.1),

6% (14y) /0(1+y) = 0(1—Cea'y) par(—adeey), (5.12.1)

where a, € p™P"F is a solution of congruence (5.8.1),

(1+a.) ta(l+a.) = a+c  (mod p@=PF) (5.12.2)

and e, is given by (5.8.3), relative to the element a,.
We use (5.8.3) to rewrite the last factor in (5.12.1) as

par (—aecy) = par(Cey) par(Caccy).
For 14y € UL " /UL write
E9,c(14y) = 0(1—a'Cey) par(Cey) par(Cacey) par(—cy).

That is, Zg(14y) is the product of the right-hand side of (5.12.1) and pas(—cy). Therefore,
invoking 5.9 Proposition 2, we have the following lemma.

LEMMA. The character Zg is trivial if and only if Vo(z) < *U(g/pq(x) for all x € I. This
condition holds for one element c € p;k/p};k ~ {0} if and only if it holds for all.

Write z = (a~'ey. Thus y — =z induces an isomorphism of ng_w/U}Eﬂrk_w with
Up—" /U™ " and
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Eo.c(1+y) = 0(1—2) par (z) par (aacz) par (—¢taz)
=0(1+2) " pa((1 + ac — ¢ Haz).

Since vg(sg/r(ac)) = w (5.8 Lemma), the formula

Ee(142) = ppr (1 + ae — ¢ Haz)

defines a character of Uy~ /U4 ™" which is independent of the character § € C(a, o) such that
15(0) < m—w. For fixed 6, the character ¢, | U™ is either trivial for all ¢ € pF /pl % < {0},
or else it is non-trivial for all such ¢, by the lemma. Given any character ¢ of Uy ™"/ U};m*w
there exists 6 € C(a, ) agreeing with ¢ on U ~". We conclude that if ¢, € p}k/p;ﬂ_k ~ {0},

)

then & = €.
The proposition therefore holds for the character
6(1+2) = €(142) = pnr (1 + a — Caz), 2 € pi™, (5.12.3)
for any non-trivial element ¢ of p;,k / p};k . O
We have completed the proof of 5.3 Theorem. O

Remark. We have noted that the character ¢ of (5.12.3) does not depend on the parameter ¢ €
p}k/p};k ~{0}. Indeed, any twisting datum (h, b, ) with jo < h < Joo will, by 5.9 Proposition 2,
give rise to the same character.

6. Variation of parameters

In §5 we fixed the stratum [a,m,0, o] and calculated ¥g, in many cases, under the restriction
(5.3.1). Here, we investigate the scope for changing the stratum without changing the set C(a, ),
in order to avoid the condition (5.3.1) and to clarify the dichotomy in part (4) of the theorem.

6.1 Let [a,m,0,a] be a simple stratum in M = M, (F'), r > 1, satisfying the usual conditions:
F[a]/F is totally ramified of degree p" and m is not divisible by p. Set ¢ = m/p". Define P(a, a)
as the set of § € GL,(F) for which [a,m,0, 5] is a simple stratum such that C(a, ) = C(a, a).
We summarize the main properties of such elements . As usual, p is the Jacobson radical of a.

PRrROPOSITION. Write E = Fla].

(1) If B € P(a, ), the field extension F[3]/F is totally ramified of degree p". Moreover,
B=a (modp M2
(2) Let k < [m/2] be an integer and let b € p~*. The element 3 = a-+b then lies in P(a, ).

Proof. In (1), the first assertion is an instance of [BK93, (3.5.1)], while the second follows from
the definition in 2.3. In (2), the stratum [a,m,0, 8] is simple with the required properties, as
follows from [BK93, (2.2.3)]. O

Remarks.

(1) Any element of P(a, «) arises as in part (2) of the proposition [BK93, (2.4.1)].
(2) If 5 € P(a,«), then P(a, 3) = P(a, a).
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(3) Let [a,q,0,7] be a simple stratum in M. If the set C(a, ) N C(a,~y) is non-empty, then
g =m and C(a,a) = C(a,~) [BK93, (3.5.8), (3.5.11)], whence ||C(a, )| = ||C(a,y)]l-

(4) Let X4 be the group of € GL,r(F) such that zaz~! = a. For 81,32 € P(a,a), say that
B1 ~ B2 if f1U" is Kq-conjugate to SoU". It is shown in [BK94] that the sets P(a, o)/~
and ||C(a, )| are in (non-canonical) bijection.

6.2 We give a first application of this concept.
PROPOSITION. Suppose that m > 2wF[a]/F. If 5 € P(a,«) then Wp[g)/F = WFa]/F-

Proof. Let p =rad a. Abbreviate wo = wr|o)/F; Ws = Wr(g)/F- By hypothesis, m—wq > [m/2]+1.
A character 6 € C(a,a), by definition (2.3.1), agrees with sy * o on the group H'*"™/2(q, q)
= UiJr[m/Q]. The integer () is the least integer k > 0 such that 6 is trivial on Up™* U™ =
1+pE ™ +p*™. In this case, [g(f) = m—w,, as in 5.2 Proposition. However, pL*4p'+™ is the
kernel of the adjoint map A, on p'** /p!*™ 50 I5(0) is the least integer k& > 0 such that ups * o
is trivial on 1 + Ker A, | p'**/p'*™. The same analysis applies relative to 3 in place of a.

By hypothesis, 0 also agrees with s % 8 on U‘}Hmm, so 8=« (mod p~I™/2). The maps
A,, Ag therefore agree on the group p*"/2l /pt*™ "and the result follows. O

The following corollary does not form part of the main development, but is included to
illuminate the division into cases in 5.3 Theorem; see Example below.

COROLLARY. In the context of the proposition, we have

U ipg) e (@) =V (plaro (@), 0<z <,
Vrig)/F = YFla)/F-

If p > 3, the function Vg has an even number of jumps.
Proof. Let © € ||C(a, )||. Part (2) of 5.3 Theorem gives
\I/@(x) = 2\P(F[a}/F,g)(x> = 2\I/(F[ﬂ]/F’g)(x), 0z < S, (6.2.1)

whence the first assertion follows.
If U denotes any of the functions appearing in (6.2.1), define ¢ by c+¥(c) = ¢, so that
VYr(a)/F(T) = Vg r(z) for 0 <z < e Let joo be the last jump of Yp(q)/p-

LEMMA. If joo < ¢, then Yp(g/r = Yrja)/r and Yo has an even number of jumps.

Proof. The second assertion follows from 4.2 Proposition and 5.3 Theorem (2). For 0 < x < ¢, we
have p"Ve(2) = Vpja)/r(z) = Yr(gp(x). Thus Yp(g),p has a jump at jeo and P p(x) =",
for joo < @ < c. Therefore joo is the last jump of Yp(g,/Fr (cf. 1.6 Proposition) and the lemma
follows. =
We use 1.6 Corollary:
< We
oS pripo1)
where wo = Wr[,),/F- Invoking also 1.6 Proposition, we obtain
. _ ) ) _ 2w, W,
Joo + D Td’F[a]/F(Joo) =2joo — P Wq < m - F
_%p+l< m p+1  p+l

T -l S pp-1 S 2p1)
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since wo, < m/2. So, if p > 3, the point (joo, ™ "¥p(a)/F(Joo)) lies strictly below the line z+y = <.
That is, joo < ¢ and, in this case, the corollary follows from the lemma.

Suppose therefore that p = 2. If = 1, the graph of ¢p|,)/r consists of segments of the two
lines y = z and y = 2x—wp(y) . Likewise for 8. The proposition gives w, = wg, whence the
result in this case.

Consider next the case where 7 > 2 and j is the only jump of ¥ (o) . Here, joo = wa/(2"—1)
(1.6 Corollary) and s0 27" p(q)/F(Joo) = 27" joo- Therefore

Wq 2"+1 < ¢ 2"+1
o or—] Sgaor—1 S°

Joo + 27 Y pia)p(Joo) =

Thus joo+27 "V p|a)/F(Joo) <6, 80 Joo < ¢, and the result in this case also follows from the lemma.

We are left with the case where r > 2 and ¢ p[,)/r has at least two jumps. If joo < ¢, there
is nothing more to do, so we assume jo, > c. Let j/ be the penultimate jump of YF)/r- In
particular,

27" Yplay p(r) <z/4, 0<a <y

We show that j’ < c.

Abbreviate a = wq/2", so that 27"V p (o) /p(z) = T—a for > joo, While 27" p)/p(2) > —a
when 0 € < joo. Thus

r—a < 27" ppyp(r) <z/4, 0<z <

The lines y = z—a, y = x/4 meet at the point (4a/3,a/3), so j' < 4a/3. Since 4a/3 + a/3 =
5a/3 < 2a < ¢, this point of intersection lies below the line z+y = <. Therefore j' < 4a/3 < c.

We have g/ r(z) = Ypp)/r(r) in the region 0 < z < c. The same analysis applies with
B replacing a, so j' is also the penultimate jump of g/ p. Let 1[1(3:) be the piecewise linear
function agreeing with v p(o)/F(2) = Ypg/r(r) for z < ¢ and smooth for z > j'. In the region
x = 0, we then have

Ypia)F(e) = max{(z), =2 wa}
= max{y(z), r—2""wg} = Ypigr(T),
as required. O
EXAMPLE. Suppose p = 2 and let © € E°(F) have degree 2. Thus ¥g has an odd number
of jumps (in fact one jump) if and only if joo > ¢, using the notation of the Corollary.

By 3.8 Proposition, this is equivalent to m < 3w (cf. Kutzko [Kut84]). So, for p" = 2, there
are examples of endo-classes @ for which m > 2w while ¥g has an odd number of jumps.

6.3 We use the notation from the start of 6.1, except that we write £ = F[a] and assume
m < 2wg,p. This case is more complex and interesting. We first investigate the possibility of
changing « to raise the exponent wg/p.

Let p be the Jacobson radical rad a of a. Let sgp/p : M — E be a tame corestriction.

PROPOSITION. Suppose that m/2 < wg/p < m and that w = wg/p # 0 (mod p). Let ( =
(w—m)/m € op. There exists b € p*'~™ such that

(C+1)sg/p(b) = sgyp(a) (mod p}E+w_m). (6.3.1)

For any such b, the element [ = a—b lies in P(a, @) and Wrg)/F > W-
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Proof. The hypothesis w # 0 (mod p) implies that ¢ Z —1 (mod pr). The exact sequences
(5.1.1) then give an element b with the necessary properties.

The hypothesis m < 2w implies 8 = a (mod p~["™/2) and, following 6.1 Proposition,
B € P(a,a). Write E' = F[].
LEMMA.

(1) Lety € py™". There exist y € pl, " and h € p™ such that
y=y +h, (6.3.2)

the map y — ¥y’ induces an isomorphism p =" /' — 0" /P
(2) The decomposition (6.3.2) may be chosen so that, additionally,

h=CbyB™t  (mod p™H4Ag(p™)). (6.3.3)

Proof. In (1), the relation H'(3,a) = H'(a,a) implies that any y € pi~ " takes the form

y = y'+h, with ¢/ € p7,7" and h € p! /2 The element [B,y] = [3,h] = —[b,y] lies in a.

By (5.1.1), we may choose the decomposition so that h € p™. The second assertion is immediate.
In (2), 5.7 Proposition gives

[8,h) = —[b,y] = Ay(b)y = (Ap(b)y (mod p+AZ(a)).
So we may further refine (6.3.2) to get (6.3.3). O

In multiplicative terms, the definition of 8 gives 8 = a (mod U¥) and therefore 371 = o~}

(mod p™t¥). Tt follows that

Chya~! = ¢byB~!  (mod p™tl), and
Aa(p™)+p™ T = Ag(p™)+pm T

Relation (6.3.2) gives ua(By) = par (BY') par(Bh), while (6.3.3), (6.3.4) yield pps(8h) = par(Cby).
On the other hand, pa(By) = pam((a—b)y) by definition, so

v (BY') = par((a=(CH1)D)y) = pe(sp/r(a — (C+1)b)y) = 1,

for all y € pip ™", by (6.3.1). Part (1) of the lemma now shows that p/(8y’) = 1 for all y’ € p’n, ™.
Therefore wg p > w, as required. O

(6.3.4)

COROLLARY. Suppose that m < 2wg/p. There exists § = a—b € P(a,a), where b € p*“=/F~™
satisfies (6.3.1), with the following property. If E' = F[f3], then either

(1) wgryp 2 wg/p and wgyp =0 (mod p), or
(2) ’UJE//F 2 m.

Proof. If wg,p is divisible by p, there is nothing to do. Otherwise, we construct Fy = F|[f]
following the proposition. If either wg, ,p > m or wg,/p = 0 (mod p), we are finished. So,
assume that wg, /p < m and wg, /p # 0 (mod p). Set w1 = wg, /p. Following the procedure as
before, we construct an element v = 8 (mod p”*~™) such that Wr)/F > w1. The congruence
condition on 7 ensures that by = a—~ satisfies (6.3.1). We iterate this procedure as necessary
until we achieve either (1) or (2). O
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6.4 We retain the notation of 6.3, in particular £ = Fla] and w = wg/p. The elements f3
of 6.3 Proposition have useful properties relative to certain simple characters.

PROPOSITION. Let 8 = a—b € P(a, o), where b € p*~™ satisfies (6.3.1).
(1) If§ € C(a, ) satisfies {(1+y) = pn(oy), y € py~ ', then
lpi) (&) = 1B(§) = m—w.
(2) If€ € C(a, «) satisfies lp(§) > m—w, then
Lpig)(§) = 1B(8).
Proof. For part (1), we use (6.3.4) to evaluate
§(+y") = par(oy)pas (ah) = par((@—Cb)y),

where y € ply~ ",y € p'y, " and h € p"™ are related as in 6.3 Lemma. As 14 is a unit of op, we
have (sp/p(b) = (spp(a)((+1)~" (mod pp ' ~™) and so, by (6.3.1),

04y = ne((C+)  spymla)y), o' € Pl

We may choose y so that £(1+y’) # 1 and part (1) of the proposition follows.
In part (2), let [ = Ig(€). Let y € pk. Since I > m—w, we use 6.3 Lemma to write y = y'+h,
where 3/ € plF[B] and h € p™*L. Thus £(144') = £(14+y) and we may choose y so that &(1+y) # 1.

If, however, y € p};l, then £(14y') = {(1+y) = 1, so lp(s)(§) = I, as required. O
Note the very restrictive hypothesis on ¢ in this corollary.

6.5 We turn to the question of lowering of the exponent wg,p. Following 6.2 Proposition,
we are restricted to the case where 2wg/p > m. The consequences for simple characters are
complementary to those of 6.4, but we get much more detail.

THEOREM. Let [a,m,0,a| be a simple stratum in M = M, (F') in which E = F|a]/F is totally
ramified of degree p" and p does not divide m. Suppose m < 2wg,p. Let d be an integer such

that
1<ds< m{ﬂ 2% WCLl >($§§{£)7.m—wE/F}a (6.5.1)
Let b € p~@ satisfy vE(sg/r(b)) = —d. The element 3 = a+b lies in P(a, a) and
wpyp=m—d <wgp, E =F[f. (6.5.2)

Let 6 € C(a, ) and write | = lg(0). For any such (3, the following results hold.
(1) Supposel < d.
(a) If d £ 0 (mod p), then lg/(0) =
(b) If d =0 (mod p), then lg/(0) <
(2) Ifl > d, then L (0) = L.
(3) Supposel =d.

d.
d.

(a) If d # 0 (mod p), then lg/(0) < d, with both equality and inequality occurring.
(b) If d=0 (mod p), then lp:(6) = d.
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Proof. Writing p = rad a, let b € p~¢ satisfy vE(sp/r(b)) = —d. Asin 6.1 Proposition, the element
B = a+b lies in P(a,«). Put E' = F[3].

LEMMA.

(1) Let y € p%. There exist y' € p%, and h € p™ such that y = y'+h. The map y — y' induces
an isomorphism p&, /p — pdE//p%‘,.
(2) Ify € pL™, then v’ € p&i! and one may take h € p™+1.

Proof. This is identical to the proof of part (1) of 6.3 Lemma, so we omit the details. O
Set w' = wg//p. We first show that un(82) = 1, for z € p};,’d. By the lemma, there exist
Yy € p};d and h € p™*+! such that y = z+h. The condition d > m—wpg/p implies pp(ay) = 1.

Since by € p, we have up(by) = 1. Altogether, unr(By) = par(ay)unr(by) = 1. Therefore 1 =
wun (B2)uar(Bh) = par(Bz), as asserted. It follows that d > m—w'.

Now take z € E' with vg/(z) = d. Thus z = y—h, where y € E satisfies vg(y) = d and h € p™.
Consequently, [3, h] = [B,y] = [b,y]. Setting ( = —d/m, 5.7 Proposition gives

[b,y] = —Ay(b)y = —CAa(b)y (mod A%(a) +p).
Since a = B (mod U~%), we have
Aa(a) = Ag(a)  (mod p"*™9), a € pt,

for any integer k. So
[8.h] = [b,y] = —CAg(b)y (mod AZ(a) + p).

We may therefore choose the decomposition y = z+h so that
h=—ChyB ™t = —Cbya™" (mod Ag(p™) +p™™). (6.5.3)

We apply the character pps * 8 to the relation y = z+h. Since pps(ay) = 1 (because d > m—w),
we get

par (by) = e (By) = par (B2) par (Bh)
= pun (B2)punr(ah)
= pnm (B2)par (—Cby),

whence par((14¢)by) = par(Bz). Our hypothesis d # m (mod p) implies that ¢ Z —1 (mod p)
so, for some choice of z, we get pp(B8z) # 1. In combination with the previous argument, this
proves that w’ = m—d and the first assertion (6.5.2) of the theorem.

Let 0 € C(a,a) = C(a,3) and suppose | = lg(f) < d = m—w'. We calculate the E’-level
lp(0). If y € E, vg(y) = 14+d, we write y = z+h as above, with z € E’ of valuation 1+d and
h € Ao(p™)+p™tL. This gives 1 = §(1+y) = 0(1+2)0(1+h) = 0(1+2). Thus I (0) < d. Now
take y € E of valuation d and write y = z+h, where vg/(z) = d and h € p™. Indeed, we may
take h = —Cbya™! (mod A, (p™)+p™+!) as before. This gives

1=0(14+y) = 0(1+2)up(ah)

and
par (ah) = par (—Cby) = pe(—Cysa(b)).
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Suppose d#0 (mod p). Thus (0 (mod pr) and we may choose y € p% so that pp(—Cysa (b)) #1.
Thus 0(1+z) # 1, whence I g/ (0) = d as required for (1)(a). If d =0 (mod p), then ( =0 (mod pr)
and 0(1+z) = 1. Thus I (6) < d, as required for (1)(b).

Part (2) follows from a similar, but easier, argument.

Part (3) is given by a counting argument as follows. Let ¢ be the cardinality of the residue
field o /p . For an integer k < [m/2], let C(a; <k) be the set of 6 € C(a, a) such that I (0) < k.
We use the obvious variations. Note that C(a; <k) has exactly ¢* elements while C(c; >k) has
g™/ elements.

Part (2) gives C(a; >d) C C(f; >d), hence C(a; >d) = C(f; >d) and also C(a; <d) =
C(B; <d). Assertions (3)(a) and (3)(b) now follow from (1)(a) and (1)(b), respectively. O

We refine the final step of the argument, retaining the notation of the theorem.

COROLLARY 1.

(1) There is a unique character ¢ of UL, /U é‘fd with the following property: if § € C(a,«) has
g (0) = d, then lg(0) < d if and only if 0| U, = €.

(2) Let 6y be the unique element of C(a, o) such that l(6y) = 0. It satisfies [/ (6p) < d and the
character £ of (1) is given as £ = 6y |U%,.

(3) The character ¢ is trivial if and only if d =0 (mod p).

Proof. Let 0 € C(a, ) have [g(6g) = 0 and endo-class Og. Let & be the restriction of 8y to U%,.
By assertion (1) of the theorem, this character £ is trivial if and only if d = 0 (mod p). Let
0" € C(a, ) have endo-class ©'. If A is the canonical ultrametric on E(F'), then [g(0") < d if and
only if A(©y,0') < p~"d. This condition is also equivalent to ¢ agreeing with 6y on Ug,. O

COROLLARY 2. Let 0 € C(a,«) satisfy lg(0) = d. In the theorem, one may choose 3 so that
lp(0) = d.

Proof. If d = 0 (mod p), there is nothing more to do, so we assume the contrary. Let
y € pd, and write y = z+h, for z € pdE, and h € p™, satisfying (6.5.3). Thus 0(14+y) =
O(14-2z) upr(ah) = 6(1+2) par(—Cby). The function 14y — ppr(—Cby) represents a non-trivial
character of U%/U;rd. We may choose b at the beginning so that s (—Cby) # 0(1+y), for some
y € pl. This gives 0(1+2) # 1 and I (6) = d, as required. O

7. The Herbrand function

We continue with a simple stratum [a, m, 0, ] as in the previous sections. We recall that ||C(a, cv)||
is the set of endo-classes of simple characters 6 € C(a,«) and that the canonical map C(a, a)
— ||C(a, )| is a bijection (2.3 Remark (2)).

In this section we state and prove the main results concerning the Herbrand function Vg,
© € ||C(a,a)|]. In 7.2 Theorem 1 and the supplementary 7.5 Proposition, we describe these
functions in coherent families, rather along the lines of 5.3 Theorem but exploiting the flexibility
gained in §6. In 7.2 Theorem 2, we take a rather different approach. We fix o and specify, via
an explicit formula, a non-empty subset C*(a, «) of C(a, ), the elements of which are the simple
characters that conform to «. If @ is the endo-class of § € C*(a, «), we show ¥g = Q\II(F[O[]/EQ. All
Herbrand functions ¥g, © € EC(F), are captured this way. The description given by Theorem 2
has particularly good properties with respect to the Langlands correspondence (§ 10 below), but
its proof relies on Theorem 1.
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7.1 We introduce a new concept.

DEFINITION. Let © € E°(F) have degree p". Let § € C(a,a) be a realization of @, on a simple
stratum [a,m, 0, a in M = M,-(F). Let E = Fa] and [ = [g(0) (5.2). Say that « is 6-conformal
if

0(14+y) = pa(ay), yepy /2.

Say « is weakly 0-conformal if
0(1+y) = pnr(ay), Y € P

In this situation, we might equally say that € is a-conformal. Let C*(a,«) be the set of
a-conformal 6 € C(a, «). Surely C*(a, «) is not empty.

Let ||C*(a,a)|| be the set of endo-classes of elements of C*(a,a). The canonical map
C*(a,a) = [|C*(a, @)|| is a bijection.

PROPOSITION. Let © € EC(F) be of degree p". The endo-class © has a realization 6 € C(a, a), on
a simple stratum [a,m,0, o] in M = My (F), such that o is 6-conformal. That is, © € ||C*(a, a)]|.

Proof. Let 6 € C(a, ) be a realization of © and let p = rad a. Let vp(«) be the least integer v for
0(1+y) = pp(ay), y € py”. Certainly v < [m/2] (2.3.1). Write E = F[a] and d, = Mm—wWg/p-
We have v > [d, /2] since, otherwise, the function pas * o does not represent a character of U }Jf” :
If v = [d, /2], there is nothing more to do.

LEMMA. Set v = vp(«), and assume that v > [d,/2]. There exists € P(a,«) such that f = «
(mod p~") and vy(B) < v—1. This condition determines the stratum [a, m,v—1, §] uniquely, up
to formal intertwining.

Proof. Recall that v < [m/2]. By hypothesis, the function
E(1+z) = 0(1+z) upy(—ax), =€ ph,

represents a non-trivial character of Uy, trivial on U }J'H’. Consequently, there exists z € p~" such
that

E(1+x) = pup(zz), =z €ph. (7.1.1)
Choose a tame corestriction sg/p : M — E and let up be the character of £ for which pgosg,/p =
par- Thus (7.1.1) reads §(1+x) = pp(sg/p(2)r), for all x as before. As § defines a non-trivial
character of U%/UL™, we have that vE(sgp/r(2)) = —v and sg/p(2) is uniquely determined,
by 6, modulo pr,¥. We invoke [BK93, (2.2.3)]: the stratum [a, m,v—1, a+z] is simple (whence

B € P(a,a)) and uniquely determined up to formal intertwining [BK93, (2.2.1)].
Set L = F[3]. We show that

0(1+z) = up(Bx), = € pi. (7.1.2)

This will imply vg(8) < v—1, as required to complete the proof of the lemma.
Since z € L = F|[B], there is a polynomial f(T') € F[T], of degree at most p"—1, such that
x = f(B). Write
f(T)=ag+arTH+ -+ ay TP L.
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The L-valuations of the terms a; 3¢, 0 < i < p"—1, are distinct. The condition vy (z) = v translates
as v < p'up(a;)—mi for all ¢, with equality for exactly one value of i. So, if we put y = f(«), we
get vg(y) = v. Consider the element

t=a—y=f(B)—fla)= ) ail(a+tz)~a).

1<i<p”

Expand ((a+2)'—a?). Any fractional a-ideal p*, k € Z, is stable under conjugation by «, so every
term in the expansion of (a+2)'—a’ lies in o’ 'za = p0 =9 Since p"vp(a;) = mi+v, the term
a;((a+z)'—at) lies in p™, whence t = f(B)—f(a) = z—y € p™.

With this element ¢, and setting

w = (1+t) " (14y) "y,

we have
142 = (14y)(1+1) (1—u).

We use this expression to evaluate 6(1+z). Our choice of z gives 0(1+y) = par(By) and, since
t € p™, we have §(1+t) = ppr(at). As yt € p™*1 so §(1—u) = 1. Therefore,

B(14+2) = 0(1-+1)0(1+) = oas (By)pas ().
On the other hand, zt € p™™ and m—v = (m—2v)+v > 1, whence up(2t) = 1. Altogether,

v (B) = par(By) pa (at) e (21) = 0(1+y) 6(1+) = 0(1+z),
as required for (7.1.2). This completes the proof of the lemma.

The proposition now follows. o
Note that, while the proposition is an existence statement, the proof is constructive.

7.2 To state our first result, it is convenient to have a looser concept reflecting the structure
of 5.3 Theorem. We consider a datum (E/F, m) in which E/F is a totally ramified field extension
of degree p", r > 1, and m is a positive integer not divisible by p.

DEFINITION. Say that (E/F,m) is standard if at least one of the following conditions holds:
(a) m > 2wg/p;

(b) m <wg/p;

(c) m < 2wg/p and wg/p =0 (mod p).

Case (c) can only arise when F' has characteristic 0 (1.8). We remark that, in case (b), the

function 2\11( E/Fm/pr) has an odd number of jumps (4.2 Remark). In case (c), we actually have
m < 2wg/, since m is not divisible by p. We can always reduce to one of these cases, as follows.

LEMMA. Let © € EC(F) have degree p". There is a simple stratum [a,m,0,a] in My (F) such
that

(1) C(a, ) contains a character 6 of endo-class ©, and
(2) the datum (Fla]/F, m) is standard.
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Proof. Choose a simple stratum [a,m,0, 5] in My (F) such that © € [|C(a, a)][. If m > 2wpg/p,
then (F[5]/F,m) is standard. Otherwise, the lemma follows from 6.3 Corollary. 0

We state our main results.

THEOREM 1. Let © € €°(F) have degree p". Let 6 € C(a,a) be a realization of © on a simple
stratum [a,m,0, o] in M,-(F') for which the datum (F[a]/F,m) is standard. Write E = F[a],
I =1g(0) and ¢ = m/p" = gg. For any such realization, the following statements hold.

(1) If I < max{0,m—wg/p}, then ¥o(x) =V g/po(z), 0 <z <.

(2) If1 > max{0,m—wg/p} and | Zm (mod p), then

Ug(z) = max {2\I/(E/F7§)(a?),m —p "(m=1)}, 0<z<s. (7.2.1)
(3) In part (2), the class © admits a parameter field E'/F as follows:

(i) E' = F[B], where 3 € P(a,a) and 8 = a (mod p~*);
(11) ’LUE'//F = m—{ and lE/(G) =1.

For any such 8, Yo (z) = 2 (g /po(2), 0 <z <.

That © has a realization of the required form is 7.2 Lemma. We shall see in the course of
the proof that (7.2.1) also holds in the situation of part (1), but says nothing new there. We
comment in 7.5 below on the restrictive hypothesis in part (2) of the theorem.

THEOREM 2. Let © € E°(F) have degree p". Let [a,m, 0, a] be a simple stratum in M = M, (F)
such that © has a realization 6 € C*(a, «). For any such realization, lFla) () = max{0, m—wF[a]/F}
and

Vo(z) = 2‘I’(F[a]/F,g@)(UC), 0<z<so. (7.2.2)

Remark. The endo-class @ has a realization of the required form, by 7.1 Proposition. When
proving Theorem 2, we show that (7.2.2) holds provided only that © has a realization 6 € C(a, a)
such that « is weakly 6-conformal (7.1 Definition). We will not use that version in the rest of
the paper.

Before embarking on the proofs of the theorems, we give a consequence of Theorem 2.

COROLLARY. Let E/F be a totally ramified field extension of degree p", and let m be a positive
integer not divisible by p. There exists © € £€°(F), of degree p", with parameter field E/F and
so =m/p", such that Vo(z) =2V g/ pm/pr(x), 0 <z <m/p"

Proof. View E as a subfield of M = M,(F') and take o € E such that vg(a) = —m. There is a
unique hereditary op-order a in M such that [a,m, 0, o] is a simple stratum in M. By Theorem 2,
any O € ||C*(a, ov)|| has the required property. O

7.3 We prove 7.2 Theorem 1. In part (1) of the theorem, suppose that (FE/F,m) is standard
of type (a) (respectively, (b); respectively, (c)). The assertion is then equivalent to part (2)
(respectively, (1); respectively, (3)) of 5.3 Theorem.

The hypothesis in part (2) implies that m < 2wg/p, so the standard datum (E/F,m) is of
type (b) or (c). To prove part (2), we first use 6.5 Corollary 2 to choose an element § € P(a, a)
such that

wpig/p =m—l and lppg/(0) = 1.

Consequently, wg(g/r < wg/p and wr(gr # 0 (mod p).
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Let 6y be the unique element of C(a, a) with [g(6y) = 0 and let @y be the endo-class of 6.
The hypotheses of part (1) of the theorem apply to 6y as an element of C(a, «), so

Vg, (x) = 2\I/(E/F7<) (), 0<z<s. (7.3.1)

We compare 6 and 6, from the standpoint of the element 8. From 6.5 Theorem 1(1), we have
lrg(0o) < I, with equality if and only if [ # 0 (mod p).
If the function Q\I'( F[g]/F,) has an odd number of jumps, then

W (g/re) = Vo, = "V (rig)/re) = Yo,
by (7.3.1) and 5.3 Theorem (1) applied to ©g and to ©. Moreover,

x—p "(m—1) = x—piTwF[m/F < 2\IJ(F[B]/F,<) (), 0<z<g,

so we are done in this case.
Assume therefore that 2\11( F|(8]/F,c) has an even number of jumps. Let I be the set of points
x such that 2\PI(F[5}/F,<) (x) = 1. Since QIII(FW]/F,C) has an even number of jumps, the set [ is a

non-empty open interval and (4.2 Proposition)

2\Ij(F[ﬂ}/F,g) () =2 —p "wpgyr, el (7.3.2)

By 5.6 Corollary 1, the functions ¥g,, 2\II(F[B]/F,<) agree outside I. By 5.6 Corollary 2, the only
possibilities are that We,(x) = > pg,/pe)(x) for all z € I, or else Yoy (x) < U pg/re)(T)
for all z € I. The first alternative is untenable: if Wi = 1 on an interval I’, then (by (7.3.1))
Vo, (r) = x—p "wg/p, € I'. But, if Vg (z) equalled 2V g5/ (x) on I, we would have
Vg, (z) = r—p~"wp(g/r there. Since wg,p > wpg)/F, this is impossible. Therefore,

U (rig)re) (@) > Vo, (x), z €1, (7.3.3)

and
2‘I’(F[B]/F,c) (z) = max {Vo, (z),2 — p " wpigr}, 0< <0 (7.3.4)

In terms of the ultrametric A on E(F’), we have A(©,0y) =1/p" > 0. It follows that the characters
6, 6y do not agree on Ull,[m. Theorem 5.3(4) now implies Wo = *¥(pig)/p,) and Part (2) follows
from (7.3.1) and (7.3.4).

Part (3) holds relative to the same choice of 3, so we have completed the proof of 7.2
Theorem 1. O

Remark. The argument following (7.3.4) shows that the character ¢ of 5.3 Theorem (4), relative
to [ and f3, is 6 | U;W. It is trivial if and only if I =0 (mod p).

7.4 We prove 7.2 Theorem 2. Let 0§ € C(a,«) be a realization of @ for which « is weakly
0-conformal and set E = F[a]. Thus | = [g(0) = m—wg/p or 0.

If either m > 2wg/p or wg/p = 0 (mod p), the desired relation Vg = Z\IJ(E/FS) is given
by 5.3 Theorem (2) or (3), respectively. We therefore assume that m < 2wg,p and that
wp/p Z 0 (mod p). In particular, [ Z m (mod p). If Q\II(E/F7m/p7‘) has an odd number of jumps,
then Ug = 2\II(E/F’§) by 5.3 Theorem (1).

We therefore assume that 2\11( E/F,) has an even number of jumps (whence (£/F,m) is not
standard). Let I be the open interval on which Z\IJEE/Fg)(x) =1,0<z<c For0<z<g, we
have (5.3 Theorem (4)) 7
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Vo(z) =V (g/po(z), x¢l,
Uo(z) < Q\I'(E/F,g)(:n) =z—p "(m=1), xze€l.

Consequently, Vg (x) = 2\1'( E/F¢)(T) at any point where these functions are smooth and have
derivative other than 1.

We use 6.3 Corollary to construct from « a standard datum (F[5]/F,m); this will be of
type (b) or (c) in the scheme of 7.2 Definition. Since (E/F,m) is not standard, wps)/r > wg/p-
By 6.4 Proposition, I (0) = I. By 7.2 Theorem 1(2),

Vg (x) = max {Q\II(F[BVFS)(QU),:U —p "(m-1)}, 0<z<s.

So, if Wg is smooth at z and Wy (x) # 1, then Vo(z) = 2V pig/pq) (2) = 2¥ (g po (). Suppose,

on the other hand, that ¥y (z) = 1. If Qqﬂ(F[ﬁ]/F,c) (x) =1, then

W (pig)/ e (€) = 2 — pwpgyp <z —p " (m=1).

Therefore ¥g(x) = z—p~"(m—1) =2V g, p ) (z) at such points. Altogether, Vo(z) =2V g/ p)(z)
for 0 < z < ¢. We have proved 7.2 Theorem 2. O

7.5 Now that Theorem 2 has been proved, Theorem 1 has no further direct role in the paper.
However, Theorem 2 gives no idea of how Wg varies as © ranges over ||C(a, «)|| while Theorem 1
does just that, modulo some limitations in part (2). For the sake of tidiness, we show that all
Herbrand functions ¥g, © € ||C(a, a)|, are captured within the scheme of Theorem 1.

PROPOSITION. Suppose that m < 2wpjq)/p- Let © € ||C(a, o). There exists 8 € P(a, ), say
F[p] = E, with the following properties:

(1) the datum (E/F,m) is standard and
(2) either

(a) 1p(0) < max{0,m—wg,p} or
(b) Ig(0) #m (mod p).

Proof. We first choose [ so that © is the endo-class of some 6 € €*(a,(), as we may
by 7.1 Proposition. Writing £/ = F'[], suppose wg(g),r =0 (mod p). Thus (E/F,m) is standard
and [g(0) = max{0, m—wg,r}, so option (a) applies.

Suppose then that wg/p #Z 0 (mod p). Thus [g(f) = max{0,m—wg/r}, so lp(0) #
m (mod p). If (E/F,m) is standard, there is nothing to do, so suppose otherwise. We
use 6.2 Corollary to find v € P(a,) such that, if L = F[y], then either wy,p > m or
wr/p =0 (mod p) and wr p > wg/p. In all cases, (L/F,m) is standard. By 6.3 Proposition,
I(0) =1lg(0) Zm (mod p), so option (b) applies. O

Recall that, in the proposition, there is nothing to say when m > 2wg/r (5.3 Theorem (2)).
Otherwise, Ug is given by 7.2 Theorem 1.

Remark. The theorems of 7.2 and the proposition above leave open the following question. What
are the functions Q\IJ( F[8]/F.)» Where 3 ranges over elements of P(a,a) subject to the condition
that the datum (F[5]/F, m) is standard?

8. Representations with a single jump

We consider here representations o € W}?r for which the decomposition function ¥, of (2.2.2)
has a unique jump: these play a central role in what follows.
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8.1 For the moment, let G be a finite p-group with centre Z # G. Say that G is H-cyclic if
Z is cyclic and G/Z is elementary abelian. Equivalently, G is an extra-special p-group of class
2. We introduce this new terminology to avoid ambiguous usage that has accumulated here.
In particular, we do not need to specify G from among the various possibilities listed in, for
instance, [Gor00, p. 203]. The material of this subsection is generally familiar, but we choose to
give a complete, albeit brief, account.

If G is H-cyclic, the commutator group [G, G| is the subgroup Z, of Z of order p. We may
view the pairing G/Z x G/Z — Z,, induced by the commutator (x,y) — [z,y], as an alternating
form on the Fp-vector space G/Z. If z,y € G, then [z,y] = 1 if and only if = centralizes y. The
alternating form is therefore non-degenerate: if [x,y] = 1 for all y € G, then x € Z.

We first give a technical result, needed in 8.4.

LEMMA. Let G be an H-cyclic finite p-group with centre Z. Let o be an automorphism of G
which is trivial on Z and induces the trivial automorphism of G/Z. The automorphism « is then
inner.

Proof. Consider the map G — Z, given by x 2z, This induces a map G/Z — Z, which is a

homomorphism: (zy)*y~'z~! = 2%~ 'y*y~!. The non-degeneracy property of the commutator
pairing gives a unique y € G/Z such that 2z~ = [y, z], for all 2. This relation says 2 = yxy~!,
as required. O

PROPOSITION. Let G be an H-cyclic finite p-group with centre Z, and let x be a faithful character
of Z.

(1) There exists a unique irreducible representation o of G such that O"Z contains x. The
representation ¢ is faithful of dimension (G : Z)Y/? and o ’ Z is a multiple of .
(2) A character £ of G satisfies £ ® 0 = o if and only if £ is trivial on Z. If D(o) denotes the
group of such characters, then
FRo= Y ¢ (8.1.1)

¢eD(o)

Proof. Denote by h the alternating form on G/Z induced by the commutator pairing (x,y) —
X[z,y], x,y € G. The non-degenerate alternating [F,-space G/Z has even dimension 2r, say. Let
L be a Lagrangian subspace of G/Z, that is, a subspace on which A is null and is maximal for
this property. Thus L has dimension 7. B

Let L be the inverse image of L in G. As h is null on L, the subgroup L of G is abelian and
maximal for this property. The character x therefore admits extension to a character yy of L.
Let y € G\ L. There exists z € L such that [z,y] # 1. This implies that x¥ (z) # x1(x), whence
Py = Ind% xr is irreducible. We form the usual inner product of characters,

1= (trpy,trpy) = GI7 ) [trpy(g)*.
geG

As trpy(z) = p"x(2), for z € Z, it follows that trp,(g) = 0, for all g € G ~ Z. Therefore p,
is independent of the choice of . The function tr p, takes the value p” = dim p, only at the
identity, so p, is faithful.

_Let o be an irreducible representation of G that contains x. With L as before, the restriction
o | L is a sum of characters ¢ (since L is abelian), each of which satisfies ¢ | Z = x. However, any
such character induces the representation p,, so o = p,, as asserted. This deals with (1).
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A character £ of G such that £ ® 0 & ¢ is surely trivial on Z. That is, £ is the inflation of
a character of G/Z. The trace calculation ensures that any such character £ satisfies { ® 0 = 0.
Thus & occurs in the representation & ® 0. The number of such characters ¢ is p?” = dimé ® o,
whence (8.1.1) follows. O

8.2 Let 0 € \/A\?‘}",lr have dimension p”, and let ¢ : Wp — PGL,(C) be the projective
representation defined by o.

DEFINITION 1. The centric field Z = Z,/F of o is defined by Wz = Kera. The tame centric
field T/ F of o is the maximal tame sub-extension of Z,/F'.

Thus o is absolutely wild if and only if T, = F'. Observe that if K/F' is a finite tame extension
and o = o | Wi € WiZ, then Z,, = Z,K and T,, = T,K.

Define D(0o) to be the group of characters x of Wg such that x ® ¢ = o.

Since o € \/A\?‘F, the restriction o = o | P is irreducible. Let DT (¢) be the group of characters
¢ of Pr such that ¢ ® 03 = U(J{ . Since 0’3_ factors through a representation of a finite p-group,
the group D% (o) is non-trivial. A character ¢ of P lies in D (o) if and only if it is a component
of (73 ® aar , whence D7 (o) has order at most p?". The group Wg acts on D* (o) in a natural
way, with Pr acting trivially.

If K/F is a finite tame extension, then Px = Pp. We may identify (ox){ with of and
DT (o) with Dt (o).

LEMMA. Let o € W"}r.

(1) If K/F is a finite, tamely ramified field extension, the restriction map D(ck) — DT (o) is
an isomorphism of D(o) with the group of Wg-fixed points in D" (o).

(2) There is a unique minimal tame extension Ty(o)/F such that the map D(op, () — D" (0)
is an isomorphism.

(3) The field extension Ty(c)/F is Galois and contained in Ty.

Proof. The lemma summarizes the discussion in [BH17, 8.2]. |
We refer to T7(o) as the imprimitivity field of o.

DEFINITION 2. Let o € Wﬁr Say that o is H-cyclic if the finite p-group o(Pp) is H-cyclic.

PROPOSITION. If o € W is H-cyclic then Ty(c) = T,.

Proof. Let Z,/F be the centric field of o. Since T, contains T7(o), nothing is changed if we
extend the base field to Tj(o) and assume T7(0) = F. According to the lemma, the group
D(o) is then isomorphic to DT (o) and so has order p?", where p" = dimo. The non-trivial
characters in D(o) are wildly ramified of order p. The sum ) $eD(o) ¢ is a sub-representation of
o ® &, of the same dimension, so 6 ® ¢ = E¢6D(U) ¢. We show that & ® o provides a faithful
representation of Gal(Z,/F'). Let o act on the vector space V. So, if x € Ker 5§ ® o, the operator
1 = &(z) ® o(z) € Ende(V ® V) is, in particular, a non-zero scalar. Each of the operators
o(x) € Ende(V), 5(x) € Endc(V), is therefore scalar. In particular, 2 € Ker 5 = Wy, as asserted.

Define K/F by Wk = ﬂ¢€D(U) Ker ¢. The extension K/F is totally wildly ramified, and
elementary abelian of degree p?". By definition, every ¢ € D(o) is trivial on Gal(Z,/K), whence
K=7,andso T, = F. O
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Remark. Following the proposition, it is natural to ask whether there exists a representation
o € WE' for which the tame centric field and the imprimitivity field are distinct. We produce an
example of such a representation ¢ in 9.7 below.

The following device is not central to our current concerns, but we include it here for its
utility in constructing examples (as in 8.4 below).

EXAMPLE. Let 0,0’ € W‘}r be H-cyclic. The following are equivalent:

(1) D (o) D (o) ={1};
(2) o ® o’ is irreducible and totally wild.

When these conditions hold, the representation o ® ¢’ is H-cyclic.

Proof. If T is a smooth, finite-dimensional representation of Pr, then 7 is irreducible if and only
if the space Homyp, (1,7 ® 7) has dimension 1. Here, c ® ¢ | Pp = Z¢€D+(o) ¢, and similarly for
o’. Therefore
(cod)o(Eed)|Pr= > ¢

peD* (o),

¢'eD*(o”)
The trivial character occurs exactly once in the sum if and only if D (¢) N DT (¢’) = {1}, so (1)
is equivalent to o ® o’ being irreducible on Pp: this is the same as (2).

Abbreviate 7 = 0 ® ¢/, and assume 7 to be irreducible. Let C' and C’ be respectively the
centres of o(Pp) and o'(Pp). For x € Pp, the operator 7(z)? = o(z)? ® o'(z)? is scalar and
liesin CC' ={z2® 7 : z € C,2' € C'}. In particular, CC" consists of scalars and is central in
7(Pr). Thus 7(Pp) is of exponent p modulo its centre. Since 7 is irreducible on Pp, this centre
is cyclic. O

8.3 Let x be a character of Pp. Define the F-slope slp(x) of x by
slp(x) = inf{x > 0: Rp(z) C Ker x}. (8.3.1)

If x extends to a character x of Wp, then slp(x) = sw(X) = sx.
Let 0 € Wi be H-cyclic, with dim o > 1. Say that o is H-singular if there exists a > 0 such
that slp(x) = a, for all non-trivial x € DT (o).

PROPOSITION. Let o € \/A\?"}r be H-singular and let a = slg(x), for x € D¥ (o), x # 1. The function
XY, has a unique jump, lying at the point a.

Proof. This is immediate, on applying (2.2.2) and (8.1.1) to o. O

8.4 The converse of 8.3 Proposition is more interesting.

PROPOSITION. Let o € VAV"},U have dimension p”, r > 1. Suppose that the decomposition function
XY, has exactly one jump, at the point a, say. The following properties then hold:

(1) the representation o is H-singular and slp(x) = a, for every x € DV (o), x # 1;
(2) sw(o ®0) = p* 5,(0) = (p*"—1)a;
(3) if o is of Carayol type, then a = sw(o)/(1+p").
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Proof. The definition (2.2.2) of X, implies that

—2r

. ™", 0<z<a,
2o(z) = {17 v a (8.4.1)

Consequently, the restriction of o to Rp(a) is irreducible and its restriction to R}.(a) is a multiple
of a character. The group S* = o(R}(a)) is therefore cyclic and central in S = o(Rp(a)). The
finite p-group S/ST is a quotient of Rp(a)/R}(a), so it is elementary. Since o is irreducible on
Rr(a), the centre of S is cyclic. Consequently, the group S = o(Rp(a)) is H-cyclic with centre
containing ST.

Let C be the centralizer of S in P = o(Pp). Again, C is finite cyclic. Let y € Pp. The
representations o, o¥ are equivalent, particularly on Rp(a). The element y must therefore act
trivially on the centre of S. The commutator group [y, Rr(a)] is contained in [Pp,Rp(a)] C
Rf(a), so y acts trivially on S modulo its centre. By 8.1 Lemma, there exists 2 € Rp(a) such
that o(xy) centralizes S. Therefore P = SC, implying that o is H-cyclic.

It follows from (8.1.1) that & ® o |Pp = }_, cp+(,) X- A non-trivial character x € Dt (o) is
non-trivial on Pr but it is trivial on the centre C of o(Pr), so x is determined by its restriction
to Rp(a). It is certainly trivial on R}(a), so it has F-slope a. Thus o is H-singular and (1) is
proven. Part (2) now follows from (8.1.1). Part (3) is 3.8 Proposition. 0

We exhibit some implications of the preceding argument.

COROLLARY. Let Z = Z,, T =T, = T(0) and o = o | Wr.
(1) The field Z is given by

(2) The Herbrand function v;/p has a unique jump, lying at e(T|F)a. Moreover,

(a) Rf(a) C Wy and
(b) Wr = Rp(a)Wy.

(3) The group Wr is the Wg-centralizer of 6(Rp(a)).

Proof. Define a field extension Y/T by Wy = ﬂX Ker x, with x ranging over D(or). It follows
from 8.1 Proposition that Y/T' is the centric field for the representation or and hence that
Y D Z. We have to check that W acts trivially on o(Wy). However, o | Wy = o7 | Wy is a
multiple of a character, so that character is necessarily stable under Wg. Therefore, Y = Z, as
required for (1).

Every non-trivial element of D(or) has Swan exponent e(T'|F)a, whence follows the first
assertion of (2). The same observation proves (a), while (b) follows from the definition of Z via
the group D(or). In (3), the group 6(Rp(a)) is the quotient of the H-cyclic group by its centre.
The dual of this quotient is the character group D(or). Under the natural action of Wp, the
centralizer of this dual is Wz, by 8.2 Lemma, implying the result. O

We finish with an example derived from [BH14a] and 8.2 Example.

EXAMPLE. Take p = 2, and suppose that I' contains a primitive cube root of unity. For i =1, 2,
let 0; € W have dimension 2 and satisfy sw(o;) = 1. [BH14a, Theorem 5.1] gives the recipe for
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Tr(o;) and DT (0;). From that information and 8.2 Example, one sees it is possible to choose o7,
o9 so that 0 = 01 ® o9 is irreducible and H-singular. It is not of Carayol type, as sw(o) = 2. If
[o]d = O, © € &(F), then Vg has two jumps and is not convex; see 8.5 Example 1 of [BH17]
for the formula.

9. Ramification structure

Let 0 € Wﬁr be of Carayol type. We return to the methods of §3 to work out the structure of
o when restricted to an arbitrary ramification group of Wp. If [o]d = 1O, 6 € E°(F), we get
a formula for Wg to set against those of § 7. Despite appearances to the contrary, everything in
this section relies on the local Langlands correspondence and the conductor formula of [BHK9S],
since we use the main results of § 3.

9.1 To avoid carrying an irrelevant variable, we make a minor adjustment to our notation.
If o € W and if © € &(F) satisfies [o]] = O, we now write ¥, = Ug.
Let 0 € WE' be of Carayol type, and set ¢ = ¢,. If 0 < 2 < g, define

we(x) = 21_1)1(1) V! (z+€) /P! (x—€). (9.1.1)

Thus we(x) is a non-negative power of p, and w,(z) > 1 if and only if z is a jump of U,.
We then call w,(z) the height of the jump x.

Symmetry, as in 4.1 Proposition, gives an order-reversing involution j — 7 on the set of jumps
of U,. If ¥, has an even number of jumps, this involution has no fixed point. If the number of
jumps is odd, it fixes the middle one. In the notation of (9.1.1), the symmetry property of ¥,
gives

W (7) = we(j). (9.1.2)
We will occasionally have to deal with the case of a one-dimensional representation o. There,

Yy(x) = Vy(x) = x and the functions Y,, ¥, have no jumps. Indeed, the converse also holds
[BH17, 7.7].

9.2 Throughout the section, we use the following notation.

Notation. Let o € W//\VVF" be of Carayol type and dimension p", r > 1. Define ¢, by ¢, + ¥, (¢s) = S5
Let
J1<je<- - <Jjs<(co) <Js<Js-1 < <] (9.2.1)

be the jumps of ¥, with the understanding that
(a) the term ¢, is included only if ¥, has an odd number of jumps and
(b) s =0 when ¥, has only one jump.

For the first version of the main result, we assume that o is absolutely wild, written o € W >,
in the sense of 3.2 Definition. We deduce the final version, for o € WgT, in 9.5.

THEOREM. Let o € Wﬁr be absolutely wild of Carayol type and dimension p”, r > 1.

(1) The restriction o | Rf(co) is a direct sum of characters.

2) Let ¢ be a character of Rf(c,) occurring in o and let Wy, be the Wp-stabilizer of €. Let
F 3
o¢ be the natural representation of Wi, on the {-isotypic subspace of o.
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(a) The field extension L¢/F' is absolutely wildly ramified (cf. 1.2) of degree p"w, (co)~1/?
and W, contains Ri(cp).
(b) The representation o¢ is irreducible, absolutely wild and

o= IndLg/F o¢.

(c) Ifcy is not a jump of W, then o¢ is a character. Otherwise, o¢ is H-singular, of Carayol
type and dimension w,(c,)'/?. The unique jump of Vo, lies at Y1, r(co).

Remarks.

(1) The triple (¢, L¢, o¢) is uniquely determined by o, up to Wp-conjugation.

(2) The function ¥, has no jump lying strictly between ¢, and 7;. So, if £ and £’ are components
of 0| Rf(cy), then & = ¢’ if and only if £ | Rp(7s) = & | Rp(7s)- If ¢r is not a jump then, in
the same way, o | R} (js) is a sum of characters, two of which are equal if and only if their
restrictions to Rp(7s) are equal.

As we prove the theorem, we uncover further features of interest that we now list.

COMPLEMENT 1. Let 1 <k < s.

(1) The restriction o | RE(jx) is a multiplicity-free direct sum of irreducible representations.

(2) The restriction o | Rp(71) is a direct sum of characters. The isotypic components of o | Rp(J)
are the subspaces 7| Rp(7x), as T ranges over the irreducible components of o | R} (k).

In light of Remark (2) above, one can equally relate the decompositions of o | Rp(ji) and
o | RE(7k). In the next result, we use the concept of elementary resolution from 1.9.

COMPLEMENT 2. For 1 < k < s, choose an irreducible component 7, of the restriction o | R (ji)
so that 711 is a component of Ty | fR;(ij), 1 <k <s. Let Wg, be the Wg-stabilizer of 7.

(a) If € is a character of R} (c,) occurring in 75 | RE(c,), then Eg = Lg.
(b) The Herbrand function satisfies

Uo(z) =p "Yryr(z), 0<z <00 (9.2.2)

(¢) The tower of fields
FCEiCEyC...CE,=L¢ (9.2.3)

is the elementary resolution of L¢/F.

Following 4.1 Proposition, symmetry implies that the relation (9.2.2) determines ¥, (z) for
0 < # < ¢,. The tower of fields (9.2.3) is uniquely determined by o, up to Wg-conjugacy.
The proofs of these results occupy 9.3 and 9.4.

9.3 The theorem of 9.2 is proved by induction on the number of jumps. If ¥, has no jumps,
then dimo = 1 and this case has been excluded. If ¥, has just one jump, the theorem and its
complements follow from 8.4 Proposition with L¢ = F.

In this subsection, we assume that W, has at least two jumps and give a reduction step
concerned only with the outermost jumps. As in 8.2, let D(o) be the group of characters x of
Wr such that y ® 0 £ 0.
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PROPOSITION. Let o € \/AV‘}WT be of Carayol type. Suppose that ¥, has at least two jumps, of
which a is the first and z the last. Let Dy (o) be the group of x € D(o) for which sw(x) < a. Let
E1/F be class field to Dy(0).

(1) The group D,(0) is elementary abelian of order wq(a).
(2) The group R}.(a) is contained in Wg, and Wr = Rp(a)Wg, .

(3) There exists o1 € W%"Ir such that o = Indg, /p 1. Moreover,

o|Rh@) = > o] IRf(a) (9.3.1)
veGal(E1 /F)

The representations o] | Ri(a), v € Gal(E/F), are distinct and irreducible. The Wp-
stabilizer of oy ‘ Ri(a) is W, .

(4) The jumps of ¥, are ¢g, /p(j), as j ranges over the jumps of Vo, j # a, z. Indeed, w, (y) =
Wey (wEl/F(y))a for Yy 7é a, z.

(5) The restriction o | Rp(z) is a direct sum of characters {. The Wp-stabilizer of any such & is
Wg, .

Proof. The group D,(c) is non-trivial (3.3 Lemma 1), so choose x € Dg(0), x # 1. Set Wi =
Ker x. The extension K/F' is cyclic of degree p, and 9 /r has a unique jump, lying at a. As
in 3.3 Lemma 2, Wx N Rp(a) = Rk (a) is of index p in Rp(a) and Rf(a) = Rj(a). There exists
TE \/AV"[V(r with 0 = Indg/p 7, the representation 7 being either absolutely wild of Carayol type
(3.3 Lemma 1) or a character. By 3.4 Theorem (2) and 3.5 Theorem, w,(y) = w-(Yx/r(v)),
provided y # a,z. On the other hand, the same results give w,(a) = pw,(a) and w,(z) =

pw- (Vg p(2))-

Note. Since o has at least two jumps, 3.5 Corollary 1 shows that the case of 3.4 Theorem (3)
need not be considered here.

LEMMA.

(1) The restriction 7 | R (a) is irreducible and

o|RE(@) = > 7R (9.3.2)
s€Gal(K/F)

(2) The representations 7° | R}.(a), 6 € Gal(K/F), are disjoint.

Proof. Since a is the first jump of X,, the restriction o ‘ Rr(a) is irreducible. The Mackey formula
implies that this restriction is Indii ((Z)) T | Rk (a), whence the first assertion follows. The relation
(9.3.2) again follows from the Mackey formula.

Since o | Rp(a) is irreducible, the irreducible components of o | Rj(a) are all conjugate and
occur with the same multiplicity. So, in (2), the representations 7° ]RJIS (a) are either disjoint or
identical. We show they are disjoint. R

Let Ag be the canonical ultrametric on Wi \Pg. Let 6 € Gal(K/F'), 6 # 1. By 3.5 Theorem
(and recalling the definition (3.4.2)) we have

Ak(r,70) = Vi/r(2) > Vg r(a) = a. (9.3.3)
The representations 7° | R} (a), 7| Rf(a) are therefore disjoint, as asserted. O
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Remark. Relation (9.3.3) implies that 7 and 7° are disjoint on Rz (2).

We proceed by induction on the integer wy(a). Suppose first that wy(a) = p, whence
wr(a) = 1. We prove the proposition with F; = K and o1 = 7. As a is not a jump of X,
(giving point (4)), we have that 7 is irreducible on Rf(a) = Rj(a). It follows that D(7) has
no element of Swan exponent a. The conjugates 7°, § € Gal(K/F), are disjoint on R} (a), by
the lemma. Consequently, Dy (o) has order p = ws(a). The point 1g/p(z) is not a jump of X7,
by 3.4 Theorem again. It follows that 7 ‘ Rr(z) is a multiple of a character. Thus

o|Re(z)= > 7| Re(2)

s€Gal(K/F)

is a sum of characters. Since z is a jump of ¥,, these characters cannot all be the same: they
fall into p distinct orbits under Wg. Assertion (5) follows, and the proof is complete in the case
wy(a) = p.

Suppose next that w, (a) is divisible by p?. In particular, 7 is not a character. Inductively, we
may assume that the result holds for the representation 7 € \//\\7‘}}” For convenience, we expand
this assumption and fix some notation.

INDUCTIVE HYPOTHESIS. Let E/K be class field to the group D,(t). Let ¢ € \/A\?aEwr satisfy
IIldE/K g =T.

(1) The group D,(7) is elementary abelian of order w;(a).

(2) The group Rj.(a) is contained in Wg and Wy = R (a)Wg.

(3) In the expansion

TIRg(@) = D IR(a), (9.3.4)
v€Gal(E/K)

the terms (7| Rf(a), v € Gal(E/K), are distinct and irreducible. The W -stabilizer of
C| R (2) is Wg.

(4) The jumps of W are g/ (k), as k ranges over the jumps of W, k # a,vk/r(z). Indeed,
wr(y) = we(Yp/k(Y)), fory # a, Y r(2).

(5) The restriction of T to Rp(z) = Rx(Yk/r(2)) is a direct sum of characters {. The Wi-
stabilizer of any such £ is Wg.

We prove that E/F is class field to Dy(c). Each of the functions ¢k, Y5/ has a unique
jump, lying at a. The same therefore applies to g p. The field E appears as a subfield of the
centric field of 0, so E/F is absolutely wild. As ¢ /r has a unique jump, lying at a, the case k =1
of 1.9 Corollary 1 implies that E/F is elementary abelian and so every element ¢ of D)(E|K)
(in the notation of 1.9 Proposition) extends to a character ¢ of Wp lying in D1y(E|F). We have
PRo = Indg/p ¢ ®7 =Indg/p 7= 0. That is, ¢ € Dy(0), whence Dy(0) = D1)(E|F) and this
group has order pw;(a) = w,(a).

We have proved part (1) of the proposition, with E; = E. Part (2) follows from the relation
(N r(a) = a. The lemma applies equally here, so the irreducible representations

(| RE(a), v € Gal(B/K), § € Gal(K/F),

are disjoint. Part (3) of the proposition now follows by induction.
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Part (4) of the proposition follows directly from part (4) of the inductive hypothesis. It
remains to prove part (5). By part (5) of the inductive hypothesis, o ’ Rp(z) is a sum of characters.
The representations 7°, § € Gal(K/F), are disjoint on Rp(z) by the remark following (9.3.3).
The result follows from the inductive hypothesis, with £y = E and o1 = (. O

9.4 We prove 9.2 Theorem and its complements. We proceed by induction on the number of
jumps of ¥,.

Proof of Theorem. When ¥, has at most one jump, there is nothing more to say. We therefore
assume, in the notation of (9.2.1), that s > 1. We apply 9.3 Proposition to get a Galois extension
E1/F and a representation o € W%“l’r such that o = Indg, /r 01. The extension Ej /F has a
unique jump, lying at ji, so Rj.(z) C Wg, for > ji. The function ¥,, has jumps at Ve, i),
where j ranges over all jumps of ¥, subject to j # j1, 71.

Suppose the number of jumps to be even. Assume to start with that this number is 2, that is,
s = 1. In 9.3 Proposition, the representation oy is a character. The conjugates o7, v € Gal(E; /F),
agree on R}(71) but are distinct on Rp(J1). All assertions of the theorem follow readily in this
case. We therefore assume that s > 2. By inductive hypothesis, o1 | R}.(js) is a sum of characters,
so the same applies to o | Rf.(js). Part (1) is done in this case. The field L = L¢ appears as a
subfield of the centric field of o, so L/F is absolutely wild. The inductive hypothesis gives a
character p; of W which induces o;. It follows that Indy/r p1 = o, and p; has the necessary
properties relative to o. This proves part (2) of the theorem when the number of jumps is even.

Suppose that the number of jumps is odd. Thus, by inductive hypothesis, o1 | Rg, (¢o,) is
not a sum of characters, while o7 | fREl (o, ) is such. Since R, (¢s,) = Rr(¢E, /r(Ccoy)), the point
¢, /F(coy) is a jump of W,. That is, ¢c; = g, /p(cs,) and we have proved part (1) of the
theorem. Assertions (2)(a)—(c) now follow by induction, exactly as in the first case, on noting
that dim o¢ = wy(c,)/? by 8.1 Proposition. O

Proof of Complement 1. We follow 9.3 Proposition to write o = Indg, ,r 1. That result also
shows that o | R}.(j1) is multiplicity-free. For 2 < k < s, the restriction o1 | R} (ji) is multiplicity-
free by the inductive hypothesis. The relation wo, (Y, /7 (jk)) = wo (jk) shows that o | RE(jx) is
multiplicity-free, and we have proved part (1).

The first assertion of (2) follows from part (1) of the theorem. Since 7; is the last jump
of W,, the restriction o1 |Rp(71) is a multiple of a character while o |Rp(71) is a direct sum
of characters. The number of isotypic components in o |Rp(J1) is we(71) = ws(j1) = [E1: F],
by 9.3 Proposition, whence the result follows. O

Proof of Complement 2. Recall that E;/F was defined in 9.3 as class field to the group Dj, (o)
of characters x of W such that x ® 0 = o and sw(y) < j1. Thus E;/F is Galois and, by 9.3
Proposition (3), Wg, is the Wp-stabilizer of any irreducible component of o | R} (j1). In the first
instance, we may therefore choose the extension L = L¢/F of the theorem, within its conjugacy
class, so that Ey C L¢. Since all choices of ¢ are Wp-conjugate and Ey/F is Galois, we have
Ey C L¢ for all §. That is, By C L.

Because of the relation o = Indy /r p¢, a character ¢ of Wr with ¢ | Wy, trivial must satisfy
¢ ® o = 0. The definition of Ey in 9.3 implies that j; is the least jump of ¢r,p. By 1.9
Proposition (3), E1/F is the first step in the elementary resolution of L/F. Parts (a) and (c) of
Complement 2 now follow by induction.
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In the proof of the theorem, we showed that ¢y, =g, /r(cs). From 3.4 Theorem we conclude
that the jumps of ¥, are
< (Vg yr(coy)) <VprQs) < <V¥pr(2),

with the same convention regarding the central entry in the list. Moreover,

Wo, (YE,/p(Jk)) = wo(Jk), 2 <k <s, (9.4.1)

and similarly relative to the central jump. Let w1 = wy(j1), so that wy = [Ey : F]. The functions
U, (), wy 'V, (¢p,/r(x)) have the same jumps in the region 0 < = < ¢;. The heights (9.1)
of these jumps are the same, and the functions agree on a region 0 < x < €. We conclude by
induction that

Vo (z) = wi " Vo, (¥, /7 ()
=p "Yrp(r), 0< <0
This proves part (b). O

9.5 We extend the results of 9.2 to representations of Carayol type that are totally, but not
necessarily absolutely, wild. The notational conventions of 9.1, 9.2 remain in force.

COROLLARY. Leto € W}’:ﬁr be of Carayol type and dimension p”, r > 1. Define ¢, by the equation
CU+\IJJ(CU) =Go-

(1) The representation o | R}.(c,) is a direct sum of characters.

Let £ be a character of R}.(c,) occurring in o. Let Wi, be the Wg-stabilizer of § and let ¢ be
the natural representation of Wr,, on the {-isotypic subspace of o | Ri(cy).

(2) The representation o¢ is irreducible and Indy, ¢/F 0¢ = 0. Moreover,

(a) dimog = wy(cy)'/?, and
(b) if dimog > 1, then o¢ is totally wild, H-singular and of Carayol type.

(3) The field extension L¢/F is totally ramified of degree p”/dim o¢ and
Uo(z) =p "Yrgr(z), 0<z<co (9.5.1)

Proof. Let T =T,/ F be the tame centric field of o. Thus 7 = o | Wr is absolutely wild of Carayol
type. If e = e(T|F), then ¥, (z) = ¥, (ex)/e and ¢; = egy, SO ¢r = €C4.

Consequently, Rf(c,) = Rf(c;) and part (1) follows from part (1) of 9.2 Theorem. All
choices of { are Wp-conjugate so let us fix one and write L¢ = L. The Wr-stabilizer of ¢ is
Wr NWp, = Wrr. The natural representation of Wy on the £-isotypic subspace of 7 | IR; (cr) is
o¢ | Wrr, which is irreducible. It follows that o¢ is irreducible and has properties (2)(a), (2)(b).
Moreover, Rp(cy) is contained in Wy, and o¢ | Rp(c,) is irreducible.

The degree [L:F] is the number of distinct characters occurring in the representation
0| RE(co) = T|RE(co), 50 [L: F] = [LT:T) and L/F is totally wildly ramified. Further,

IndL/F O¢ ’WT = IndLT/T (0'5 ‘ WLT)-

This restriction is irreducible, whence Ind; p o¢ is irreducible and equivalent to o. Finally, for
0<z<cg,

U, () = Vr(ex)/e =p "Yrrr(ex)/e =p " p(z),
by (2.2.3), 9.2 Complement 1 and 1.1 Lemma. O
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COMPLEMENT. Ifo € W"}r, the assertions of 9.2 Complement 1 apply unchanged.

Proof. Take T/F, e = e(T|F) and 7 = 0| Wy as in the proof of the corollary. Thus Rp(x)
Rr(ex), Ri(x) = R (ex), for all > 0. So, for > 0, the decomposition structures of o | Rp(z
and o | R} (z) are identical to those of Ry (ex) and 7 | Rf(ex).

~—

O

Remark. Let K/F be a finite tame extension and set e = e(K|F'). We may view & as a character
of Rf(ec,) = Rj(cpy ), where o = 0| Wi. The arguments in the proof of 9.5 Corollary show
that Ly, ¢ = KLg¢, in the obvious notation.

9.6 We continue with the notation of 9.5 Corollary, and look into the structure of the inducing
representation og¢. This is in preparation for a more detailed discussion in the next section.

DEFINITION. Let Ea’g/Lg be the centric field of the representation o¢ € VA\?VLVE

The extension Eg,g /L¢ is Galois and Eg,g /F' is uniquely determined by o, up to conjugation
in Wg.

PROPOSITION. Suppose o is absolutely wildly ramified. The extension Eg’g/Lg is totally ramified
and elementary abelian of degree (dim 05)2. If Lo¢ # Le, the extension L,¢/L¢ has a unique
ramification jump, lying at 11, /r(cs). In particular, Ri(co) C W5 .

Proof. All assertions are trivial if o¢ is a character, so assume otherwise. By 9.2 Theorem, the
representation o¢ of W, is absolutely wild and H-singular. Thus f,g,g /L¢ is totally ramified
and elementary abelian of degree (dim 05)2. By 8.1 Proposition, it is class field to the character
group D(o¢). The unique ramification jump of o¢ lies at ¢, p(c,) (9.2 Theorem again), so
every non-trivial element of D(o¢) has Swan exponent ¢, r(cs) (8.3 Proposition). Therefore

Wi DR} (brrler) = Ri(eo). 0

In the general case o € WVFV’“, the extension Emg /L¢ is not totally wildly ramified. We recall
the standard example.

ExAMPLE. For this example, we adhere to the classical framework of the exposition in [BH06,
§41]. Take p = 2, and let o € \/AVF be primitive of dimension 2. The representation ¢ is then
totally ramified and H-singular. After twisting with a character, if necessary, we may assume
that o is of Carayol type. In terms of the preceding discussion, ¥, has one jump and L¢ = F.
Using standard notation for permutation groups, 6(Wp) is either A4 (if F' has a primitive cube
root of unity) or Sy (otherwise). The tame centric field T, /F is cyclic of degree 3 in the first
case and, in the second, Gal(T,/F) = Ss.

9.7 As an application of the methods of this section, we return to the question posed

in 8.2 Remark. If o € W}‘,ﬁr, we use the notation D(c), D' (o), Ti(o) introduced in §8. In
addition, T'(o) shall be the tame centric field of o.

APPLICATION. There exist a field F', of residual characteristic 2, and a representation o € \/AVVI?
such that Tt(o) # T(o). One may take o to be of Carayol type and dimension 4.
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Proof. Let F have residual characteristic 2. Let K/F be totally ramified of degree 4, such that
Y/ has two jumps a < b, of which a is an odd integer. Replacing F' by E and K/F by FK/FE,
where E/F is finite and tamely ramified, we may assume b—a to be as large as necessary without
affecting the parity of a.

Let m be a positive integer and define ¢ = ¢, by the equation 4c + ¥k, p(c) = m.

LEMMA. If b—a is sufficiently large, one may choose m so that

(1) a<em < b,
(2) m # 2a (mod 3),
(3) m =a+2 (mod 4).

This is clear. Assume it has been done, and note that m is odd. We obtain
¢ =cm = (m—2a)/6.

The bi-Herbrand function ¥ = 2\11( K/Fm/4) has three jumps, namely a, ¢ and 2, satisfying
a < ¢ < z. By 7.2 Corollary, there exists © € E°(F) such that ¥(z) = ¥g(x), 0 < = < m/4.
Choose o € \/A\?V}!r such that [0]] = “©. We show that o has the desired properties.

Let ¢ € D" (o), ¢ # 1. The F-slope slp(¢) of ¢, as in (8.3.1), can only take a value a,c, 2
(cf. [BH17, 8.1 Proposition]). Suppose slg(¢) = a. The jump a has height 2, so there is only one
possibility for ¢. Since a is an integer, the Wg-stabilizer of ¢ | Rp(a) is of the form Wg, where
E/F is unramified. The character ¢ € DT (o) is completely determined by its restriction to
IRF( ), so Wg is the W p-stabilizer of ¢. So, writing o = o | Wg, there exists a unique character
¢ € D(og) such that ¢|Pr = ¢ (8.2 Lemma). Thus D, (o) has order 2.

Suppose next that slp(¢) = ¢ = (m—2a)/6. The conditions imposed on m imply 3c € %Z NZ.
We conclude that there is no finite tame extension E/F for which ¢ extends to a character of
Wg. Finally, consider the case where slp(¢) = z. By 3.5 Theorem, z = (m—a)/4 € 1Z \ Z and
the same conclusion holds. We have shown the following proposition.

PROPOSITION. The group Dt (o) has order 2 and there is a finite unramified extension E/F
such that every character ¢ € D (o) is fixed by Wg. Further,

(1) D(og) = Dy(0g), where op = o | Wg and
(2) Tr(o)/F is unramified.

We now follow the procedure of 9.5 to choose a character & of Rf(c) occurring in o | RE(c). We
set L = L¢ and 7 = 0¢. We have 0 = Indy /7. Since sw(o) = m and wr/p = a, we get sw(7)
m—2a # 0 (mod 3). The Herbrand function ¥, has a unique jump, which lies at (m—2a)/
(8.4 Proposition). It follows that e(77(7)|L) is divisible by 3. This implies that e(T'(0)|F) is
divisible by 3, whence T'(c0) # T1(0).

w

O

Remark. The choice of p = 2 in the example is for simplicity only. There is nothing special about
the case p = 2 in this context.

10. Parameter fields

Let [a,m, 0, a] be a simple stratum in My (F'), r > 1, with the usual properties: Fa|/F is totally
ramified of degree p” and m = —vp(y (@) is not divisible by p. Let

§*(a) = {o € Wi : [o]g € L€ (a,a)|]}.
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Observe that every o € §*(a) has dimension p".

If 0 € §*(a) and [0]f = O, we have two determinations of ¥g, from 7.2 Theorem 2 and
9.5 Corollary, respectively. In 9.5 and 9.6 we attached to o a tower of fields F' C L¢ C Eg@
given by a character & of R;,C(ca) occurring in ¢. This configuration is determined by ¢ up to
Wp-conjugation. We now examine how it varies when © ranges over ||C*(a, «)]||.

10.1 We fix notation for the rest of the section. With [a,m, 0, a] as above, we abbreviate

ga:m/pr’ Wa = WE]/F>
lo = max(0,m—wy), Ao = [la/2]. (10.1.1)

By 7.2 Theorem 2, Wo(x) = 2 (p(a)/pc.) (2), for all © € [|€*(a,a)| and 0 < z < ¢o. We use the
notation
U (pla)/Fea) = Yoo
Ca + Valca) = Sas (10.1.2)
Uy(ea) = Aa/D"

Let G(a) be the subset ||C*(a, @) of Wp\ﬁp Every element of §§(«) is a singleton orbit, so
we may treat such orbits as individual representations of Pr. Restriction to Pp gives a surjective
map §*(a) — Gj(a). Each fibre of this map is a principal homogeneous space over the group of
tamely ramified characters of W, as in [BH14b, 1.3 Proposition].

10.2 We give a relative characterization of the elements of §*(«) in terms of the ultrametric
pairing A on Wpg.

PROPOSITION. Let 0 € §*(«) and T € \//\VVFVF The following conditions are equivalent:
(1) 7€ §(a);

(2) dim7 < p" and A(o,T) < €4;

(3) dim7 < p" and Homy;( y(o,7) # 0.

€a

Proof. We first work on the GL side.

LEMMA. Let © € ||C*(a,v)|| and @ € E(F). The following are equivalent:

(1) @€ € (a,a)];
(2) deg® < p" and A(P,0) < \o/D".

Proof. Let 6 € C*(a,«) have endo-class ©. If & € [|C*(a,a)||, then deg® = p" and P is
the endo-class of some ¢ € C*(a,a). By definition, ¢ agrees with § on H'**«(«,a), whence
A(P,0) < A\y/p". Thus (1) implies (2).

Assume (2) holds. Since A(®,0) < l,/2p" < m/p", we conclude that ¢s = m/p"; this follows
from the definition of A. As deg® < p" and p does not divide m, so deg® = p” and @ has a
realization ¢ € C(a, 3), for a simple stratum [a,m,0, 5] in which F[5]/F is totally ramified of
degree p". The characters ¢ | H1**(8,a), 0| H'T**(a, a) intertwine in GL,-(F) by hypothesis.
Since A\, < m/2, [BK93, (3.5.11) Theorem] allows us to replace ¢ by a conjugate to achieve
H'(B,a) = H'(a,a) and ¢ € C(a,a). The characters ¢ | H'*(a,a), | H'*(a, a) intertwine
and so are equal [BK93, (3.3.2)]. That is, ¢ € C*(a, a), as required. O
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In the proposition, the equivalence of (2) and (3) is the definition of A. Write [o] = O,
[7]§ = Y@. In particular, © € E(F) while ¢ € &(F) is totally wild of degree at most p". We
have Ug(A(o,7)) = A(O,P). The definition (10.1.2) shows that A(©,P) < A\,/p" if and only if
A(0,7) < €4. The proposition thus follows from the lemma. O

Remark. In the lemma, the hypothesis deg @ < p” is essential. For, the Density Lemma of [BH17,
5.3] shows that the set of values A(O,P), € E(F), is dense on the positive real axis. Indeed, the
same proof shows that the set of A(©,®) is dense when @ is confined to the set of totally wild
endo-classes. In the proposition, the hypothesis dim 7 < p" is likewise essential. Interpretation of
the general case, with dim 7 unbounded, is the subject of [BH17, 6.5 Corollary].

10.3 Let joo(a) = joo(F[a]|F') be the greatest jump of the function ¥ p/p-

DEFINITION. Say that [a,m,0,«] (or the element «) is *-exceptional if joo(a) = cq, lo > 0 and
lo =0 (mod 2). Otherwise, say that « is x-ordinary.

Both exceptional and ordinary cases arise. If « is x-exceptional, then ¥, has an odd number
of jumps. Otherwise, both odd and even cases occur. We prove the following theorem.

THEOREM.

(1) There is a character & of R}.(cq) occurring in every representation o € §*(«). This condition
determines £ uniquely, up to Wg-conjugation. In particular, each o € G*(«) determines the
same conjugacy class of field extensions L¢/F.

(2) Suppose that « is *-ordinary but that ¥, has an odd number of jumps. There is an
irreducible representation pe of Rp(cq) that contains & and occurs in every o € §*(a).
This condition determines p¢ uniquely, up to Wg-conjugation.

(3) If « is x-ordinary, then Zgé = ET@ for all o, 7 € §* ().

Proof. We estimate the number ¢, to get a more effective bound for the distance A(oy,09),

o; € §* ().

LEMMA 1. Write joo(@) = joo(F[a]|F).

(1) If joo(a) < cq, then cq = (M~4wy)/2p" and Wy (co) = 1o /20"
(2) If joo(a¥) > cq, then cq < (M~+wy)/2p" and Vo (co) > 1o /20" = Aa/P"-

Proof. Suppose joo() < ¢o. The function ¥, then has an even number of jumps, its graph
contains a non-empty open segment of the line y = x—p~"w,, and = = ¢, is the intersection of
this line segment with z+y = ¢, (4.2 Proposition). That is, ¢, = (m+w,)/2p" and so ¥, (cy) =
Ca—D "wo =1o/2p".

Suppose next that jeo(a) = co. Therefore Wo(ca) = p~"Yp(a)/r(Ca) = ca—p "wa. Thus
2¢0—p "Wa = So Whence ¢, = (M4wy)/2p" and ¥, (cq) = lo/2p"as desired.

In (2), the line y = x—p~"w, lies strictly below the graph y = ¥, (x), (cf. 1.6 Proposition,
4.2 Proposition), giving

Sa — Ca = \Ila(ca) > Cq— P Wa,

and hence the first assertion. The three lines y = 1, /2p", y = x—p "w, and z+y = ¢, all meet
at © = (m4wy)/2p". As (m4wy)/2p" > cqo, we have U, (co) > 1o/2p". O
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LEMMA 2.

(1) IfUl,UQ S 9*(04) then A(Ul,UQ) < Cu-
(2) There exist 01,09 € §*(a) such that A(o1,02) = ¢o if and only if either

(a) Jooler) < cq andly is even, or
(b) « is x-exceptional.

Proof. By 10.2 Proposition,
max{A(o1,09) : 0; € §*(a} = €0 = U (N /p").

By Lemma 1 above, ¥, (cy) = Ao/p", whence ¢, = A\o/p". This proves (1). If joo(a) > cq,
Lemma 1 gives €, > cq, s0 A(01,02) < c¢q in this case. If joo(a) < ¢o, Lemma 1 gives
ca = VU (lo/2p7) = V1 (N\o/p"), with equality if and only if I, is even. This accounts for
option (a) in case (2).

This leaves the case joo() = cq. If I # 0, the same argument applies and gives option (b).
It remains only to show that the conditions joo () < ¢4 and I, = 0 are incompatible.

Suppose these two conditions hold. We have m < w, while, by Lemma 1, ¢, = (m+w,)/2p".
Now 1.6 Corollary implies

m—+weg Wey pr—1 . .
2w ST S Joo(@) < oo (),

Co =
contrary to the hypothesis joo (@) < c4. O

We prove the theorem. In part (1), choose o € §*(a) and apply 9.5 Corollary. In the notation
of that result, o | R}.(c,) is a direct sum of Wp-conjugate characters £. If 7 € §*(a), Lemma 2
gives A(o,7) < ¢q whence any such £ occurs in 7. The uniqueness property follows by symmetry.

In part (2), take £ as in part (1) and set L = L¢. By definition, Wy, is the Wp-stabilizer
of £ and we have IR;,C(CQ) C Wr. Let o¢ be the natural representation of Wy, on the &-isotypic
subspace of 0. The Rp(c,)-normalizer of the character £ is W, N Rp(cq), by the definition of L.
So, the representation p¢ of Rp(cq), induced by o¢ | Wr, N Rp(cq), is irreducible. If 7 € §* (),
Lemma 2 asserts that A(o,7) < cqa, 50 p¢ also occurs in 7. The representation pe therefore has
the required properties.

Part (3) is trivial if ¥, has an even number of jumps, as then Emg = L¢. Assume otherwise.
In the same notation as in the proof of part (2), o¢ | Wr N Rp(cq) is the natural representation
on the {-isotypic subspace of p¢. Consequently, if 7 € §*(a), the representations o¢, 7¢ agree
and are irreducible on Wz, N Rp(ca). Therefore 7¢ = x ® o¢, for a character x of Wy, trivial on
UQ} (ca), and so o¢, T¢ define the same projective representation of Wy. Their centric fields are
therefore the same. This proves (3) and completes the proof of the theorem. O

10.4 We fix a character & of Rf(cs), occurring in some, hence any, o € §*(a). Let Wy, be
the Wp-stabilizer of £. For 0 € §*(a), let o¢ denote the natural representation of Wy, on the
&-isotypic subspace of o.

LEMMA 1. If Aj denotes the canonical ultrametric pairing on WL, then

max {Ar(og, 7¢) : 0,7 € §F(a)} = Aa. (10.4.1)
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Proof. By 10.2 Lemma, max{A(©,®) : 0,® € ||C*(a,a)||} = A\a/p". So
max{A(0,7) 1 0,7 € §* ()} = U3 (Na/D") = ¢r/r(Na);
by (9.5.1). Relation (10.4.1) now follows from 1.4 Proposition. |

Let k£ > 0 be an integer and K/ F a finite field extension. Let I'y(K) be the group of characters
of K*/U };’k , sometimes viewed as characters of Wg. Let I'?(K) be the group of characters of
1 prltk
UL UL, )
Let J(L,&) be the set of representations o¢ € W}", for o € §*(c). The induction functor
Indy,/ then gives a bijection H(L,&) — §*(a).

PROPOSITION.

(1) If x € T\ (L) and k € H(L, &), then x ® k € H(L,E).
(2) If « is x-ordinary, then the set H(L,¢) is a principal homogeneous space over I'y  (L).

Proof. By definition, the character x is trivial on R} (\a), so Ap(k,x ® k) < Aq. The
representation kI = Ind; /F # is irreducible and lies in §*(a). If p is an irreducible component of
Indy,/p x ® K, it follows that A(kT, p) < ¢1,/F(Aa) = € and dim p < p”. From 10.2 Proposition
we deduce that p € §*(a) and dim p = p". That is, Indy/p x ® k = p is irreducible and lies in
G*(a). Therefore, x ® k € H(L,§).

Let Ho(L, &) be the set of equivalence classes of representations o¢ | P, 0 € §*(«). Induction,
from Py, to Pp, gives a bijection Ho(L,&) — G§(a). In the second part of the proposition, it is
enough to show that Hy(L, &) is a principal homogeneous space over Fga (L). The sets Ho(L,§),
|€*(a,a)|| and €*(a, ) are in canonical bijection, and €*(a, «) visibly has exactly ¢** elements,
where ¢ is the cardinality of the residue field of F'. This reduces us to showing that, if & € Hy(L, &)
and y € Fga(L), X # 1, then x ® k % k.

If joo(a) < cq, the representation x is a character, and the result is obvious. To deal with the
other cases, we need the following general fact. Recall that jo(L|F') denotes the largest jump of

Yr/p.
LEMMA 2. If W, has an odd number of jumps, that is, if joo (@) = ¢4, then joo(L|F) < cq.

Proof. Let d~ (respectively, d*) be the left (respectively, right) derivative of ¥, at c,. Let
dimog = p® = p" /[L: F]. The H-singular representation o¢ of Wy, is irreducible on Rp(cq) "Wy,
but is a sum of p* copies of £ on R} (c,) (which is contained in Wp,). Therefore d*/d~ = p?.
Symmetry (as in 3.1) implies that d™ = (d7)~!, whence d~ = p=% = p~"[L: F]. So, if § is
small and positive, @ZJ’L/F(x) = [L:F] for c4—0 < & < ¢q. It follows (cf. 1.6 Proposition) that
Joo(L|IF') < cq—0 < ¢q, as required. O

Suppose that joo(a) = ¢ and [, is odd, or that joo(@) > ¢o. In either case, the function ¥,
has an odd number of jumps. It follows from Lemma 2 that joo (L|F) < ¢4, 80 Rp(co) € Wi, by
1.9 Corollary 2. The restriction x| Rp(cq) is irreducible, since ¥, /p(ca) is the only jump of .
If p is a representation of Py, such that p|Rp(cy) = k| Rp(ca), there is a unique character ¢
of Py, trivial on Rp(cy), such that p = ¢ ® k. By 10.3 Lemma 1, any x € Fga (L) is trivial on

Rr(co). The representations y ® k are therefore distinct, as y ranges over (U} /U F’Aa) , and the
proposition follows. O
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Remarks.

(1) Suppose that « is x-ordinary. The set G*(«) then inherits the structure of principal
homogeneous space over I'y, (L), via the bijection Ind/p : H(L,§) — §*(a).

(2) If « is x-exceptional, there will, in many cases, exist non-trivial characters y € I'y_ (L) such
that x ® o¢ = 0¢. This is incompatible with a principal homogeneous space structure.

10.5 We assume, in this subsection, that « is x-exceptional. We fix a character £ of fR?;(ca) as
in 10.3 Theorem and abbreviate L = L¢, Ly = Ly ¢. Let T, /L be the maximal tame sub-extension
of L,/L, and define the character group D(o¢) as in 8.2.

THEOREM. Suppose that « is x-exceptional.

(1) Ifo,7 € §*(v), then T, = T7.

(2) The integer d = |D(o¢)| is independent of the choice of o € §*(v). It satisfies d'/? < dim o =
p"/[L:F]. N

(3) There are, at most, d distinct Galois extensions of the form L, /L, as o ranges over §*(«).
If p does not divide [Ty, : L], there are exactly d such extensions.

Proof. We gather some identities. First, Vo (z) = p~"¢r/p(7), 0 < z < ¢, by 9.5 Corollary.
Since joo(®) = ¢4, 10.3 Lemma 1 gives ¥, (cq) = lo/2p". Consequently,

Yryr(ca) =la/2. (10.5.1)
In this situation, jeo(a) = ¢4 > Joo(L|F') by 10.4 Lemma 2, so
Rr(ca) =R r(ca)) = Re(la/2) (10.5.2)

by 1.9 Corollary 2. Write e, = e(15|L), so that Rp(lo/2) = Rt, (esla/2). The point e,lq /2 is the
unique jump of L,/T,, so

RE(ca) = RE (la/2) = RS (eqla/2), (10.5.3)

and
Wr, = WZJJQL(ZQ/2). (10.5.4)

We prove part (1) of the theorem.
LEMMA 1. Ifo,7 € §*(a), then T = T,,.

Proof. By 8.2 Lemma and Proposition, the group Wz is the common Wp-stabilizer of the
elements of the character group D7 (o¢). Dualizing (via 8.1 Proposition), the group Wr, is the
Wp-centralizer of o¢ (R (1) r(ca)) modulo its centre (cf. 8.4 Corollary). This centre, we assert,
is independent of o. The pairing (z,y) — &([z,y]) defines an alternating form on the F,-vector
space Ry (lo/2)/R} (Ia/2). Let R be the inverse image, in Ry (lo/2), of the radical of this pairing.
Since Wy, fixes £, it normalizes R. The image o¢(R) is the centre of o¢(Rr(lo/2)). Thus Wr, is
the Wp-centralizer of the finite group Rz (l,/2)/R and so is independent of o. O

In part (2) of the theorem, the integer dimoe = p”/[L: F] is certainly independent of o €
G§*(cv). By 8.2 Lemma (1), the order of the group D(o¢) is the number of fixed points for the
natural action of Wy, on Ry (l,/2)/R, in the notation of the proof of Lemma 1. It is therefore
independent of o and we have proved part (2) of the theorem.

In light of part (1), we abbreviate T' = Tj,.
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LEMMA 2. Suppose that T'= L. For T € §*(«), the following are equivalent:
(1) L, = Ly;
(2) there is a character x of Wy, trivial on R} (l/2), such that T¢ & x ® 0.

Proof. Surely (2) implies (1), so suppose that (1) holds. The restrictions o} = o¢[RL(la/2),
74 = 7¢ | Rp(la/2) are irreducible, and each is a multiple of { on R} (la/2). On the group R (as in
the proof of Lemma 1), each is a multiple of a character of R extending £. Consequently, there is a
character ¢ of R, trivial on iRZ(la/2), such that 7¢ | R = ¢r @ 0¢ | R. The character ¢ extends to
a character ¢ of Ry, (l,/2). For any such ¢, we have Té =0¢® aé. The projective representations o,
T¢ defined by o¢, 7¢ are therefore identical on Ry (Io/2). Each of these projective representations
has Wz ="W5 inits kernel, so ¢, 7¢ are the same on the group Wy, = W = W5 UQL(Z /2) That
is, o, 7'5 are hftlngs to Wy, of the same projective representation o¢. It follows that e £ X ® o,
for some character x of Wy, trivial on R} (Io/2). O

In the case T'= L, we have D(o¢) C Ty, /5(L), so Lemma 2 implies that the number of distinct
fields Ly /L, o € G*(av), is

P12 (LN ()] = [T, /2 (L)\G5(a) -

The set G() is in bijection with ||C€*(a,a)|, and so has glo/? = |Fl /2( )| elements, while
each element of Gj(a) is fixed under twisting by exactly d elements of Fla /2(L). Therefore
‘Fl /2 )\96(&)| = d, as required for part (3) of the theorem in this case.

Return to the general case and write e = e(T'|L). For o € §*(«), write a5 = o¢ | Wr. Thus
aéT has centric field L, /T. For 0,7 € §*(a), Lemma 2 shows that L, = L, if and only if there
exists x € 'y, 2(T") such that TfT = X@Uf So, if there exists ¢ € I, /o(L) such that 7c = ¢ @ o,
then L, = L,. Counting as before, there are at most d = |D(o¢)| distinct fields L., as o ranges
over Gf(c). We have proved the first assertion of part (3) of the theorem.

In general, the relation Tg =Xx® ag implies x/x7 € D(agT) for all v € Gal(T'/L). That is, x
defines a Gal(T'/L)-fixed point in T, /o(T)/ D(Ug ). If p does not divide [T: L], this is equivalent

to x € I', 2(L)/D(0¢), since D(o¢) is the group of W-fixed points in D (o Iy (8.2 Lemma). The
final assertion follows. O

Remark. There are indeed cases of p dividing [T, : L] in the context of the theorem; we have
already seen this in the example of 9.6.

10.6 For this subsection only, we assume that p # 2. We outline a mild variant to our approach,
following Mceglin [Me90]. It gives a simpler expression of the results, at the cost of a loss of
generality.

Otherwise, we use the notation from the beginning of the section. Suppose that [, > 0. Define
Cf(a, @) to be the set of § € C*(a, ) satisfying

0(1+y) = py(ely — 397)), v € E, vp(y) = [(1+a)/2]. (10.6.1)

This expression does indeed define a character of U EI—HQ)/ 2)I, Surely €f(a,a) is not empty.
It is equal to C*(a,a) when I, is odd. Let ||€f(a,a)|| be the set of endo-classes of characters
6 € Ct(a,a). In the case I, = 0, we may put Cf(a,a) = €*(a, a); remember that this set has only
one element.
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LEMMA 1. Let 6 € C(a, ). There exists 3 € P(a, ) such that 6 € Cf(a, B).
Proof. This follows readily from 7.1 Proposition. O

Let G() be the set of o € \/AVV},YF such that [o]] € ¥||€T(a, @)||. The advantage of this approach
is encapsulated in the following lemma.

LEMMA 2. For 0,7 € G'(a), one has Ao, T) < cq.

This follows from 10.3 Lemma 2. Imitating the discussion in 10.4 and 10.5, using the same
notation, we find the following result.

PROPOSITION.

(1) Ifo,7 € §f(a), then L, = L.
(2) Let N, = max{[(1+l,)/2]—1,0}. The set Gf(a) is a principal homogeneous space over
Ly (L).

10.7 Explicit results concerning the local Langlands correspondence fall into three areas. For
essentially tame representations (which have trivial Herbrand functions), complete results are
given in [BHO05a, BHO5b, BH10]. A method for reducing to the totally wild case is worked out
in [BH14b]. For totally wildly ramified representations, results are confined to a small number
of old, but distinguished, papers. We briefly examine the relation between this paper and that
historical context.

Leaving aside the peripheral case of [BH14al, the significant work concerns dimension p,
in the context of proving the existence of the Langlands correspondence. The case p = 2 is
in Kutzko [Kut80, Kut84] (as recounted in [BH06]), p = 3 is Henniart [Hen84] while p > 5 is
Meeglin [Mae90].

The keystone of Kutkzo’s work is the management of the case where, in the notation of the
rest of the section, ¥, has a single jump. He proves that this is equivalent to m < 3w, (as we
noted in 6.2 Example). He identifies the field we called T, in 10.5: it is the splitting field of the
polynomial X3 — tr(a)X? + det(a) [BHO06, 45.2 Theorem|. This approach is extended to odd p
in [Me90, V.4 Proposition]. A similar ‘universal polynomial’ appears in [BH14a, 5.1 Theorem]
for epipelagic representations, that is, those with Swan exponent 1 in arbitrary dimension p’.
These results anticipate the more general 10.5 Theorem (1).

Kutzko’s construction of the Langlands correspondence has little to say about relating
parameter fields F|a|, L¢ on the two sides. To define the correspondence, he relies on the Weil
representation. That construction has remained resistant to further elucidation.

Moeglin’s paper [Moe90], for p > 5, goes significantly further in that respect. It builds on
Kutzko and Moy [KM85] and Kutzko [Kut79] along with Carayol [Car84]. It also relies on a
number of working hypotheses that have since been verified, notably:

(1) characterization of the Langlands correspondence via local constants of pairs (see [Hen93]);

(2) compatibility of Kazhdan’s lift [Kaz84] and the Kutzko-Moy tame lift [KM85] with Arthur—
Clozel base change [AC89] (see [HH95, BH99], respectively).

All of those cited papers assume F' to be of characteristic zero. That restriction is removed
in [HL10, HL11].

A feature of [Mce90] is the treatment of the relation between parameter fields. To rearrange
matters in accordance with the scheme here, we start with a simple stratum [a, m, 0, a] in M, (F)
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(as throughout) such that m > w,. Write E = F[a] and let # € Cf(a, ). Let xg be a character
of EX agreeing with 6 on U},. The representation o(xy) = Indg /F Xo is then irreducible, totally
wild and of Carayol type. If E/F is cyclic, then o(xyg) is absolutely wild. In this case, Moeglin
shows that the set of representations o (xg), for @ € Cf(a, a), is what we have called Gf(«). That
is, the Langlands correspondence matches parameter fields.

In general, the problem of describing parameter fields for H-singular representations seems
to be of a different order. In the case of epipelagic representations [BH14a] (where m = 1), the
field F[a] is so ill-determined as to make the question meaningless without some qualification.
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